Composites from a forest biorefinery byproduct and agrofibers: Lignosulfonate-phenolic type matrices reinforced with sisal fibers

TAPPI Journal ◽  
2012 ◽  
Vol 11 (9) ◽  
pp. 41-49 ◽  
Author(s):  
CRISTINA GOMES DA SILVA ◽  
FERNANDO OLIVEIRA ◽  
ELAINE CRISTINA RAMIRES ◽  
ALAIN CASTELLAN ◽  
ELISABETE FROLLINI

The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm-1 to 800 J m-1 and 1000 J m-1, showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Nina Graupner ◽  
Jörg Müssig

The present study focuses on a comparison between different cellulose fiber-reinforced thermoplastics. Composites were produced with 30 mass-% lyocell fibers and a PLA or PP matrix with either an injection (IM) or compression molding (CM) process. Significant reinforcement effects were achieved for tensile strength, Young’s modulus, and Shore D hardness by using lyocell as reinforcing fiber. These values are significantly higher for PLA and its composites compared to PP and PP-based composites. Investigations of the fiber/matrix adhesion show a better bonding for lyocell in PLA compared to PP, resulting in a more effective load transfer from the matrix to the fiber. However, PLA is brittle while PP shows a ductile stress-strain behavior. The impact strength of PLA was drastically improved by adding lyocell while the impact strength of PP decreased. CM and IM composites do not show significant differences in fiber orientation. Despite a better compaction of IM composites, higher tensile strength values were achieved for CM samples due to a higher fiber length.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2028 ◽  
Author(s):  
Adam Olszewski ◽  
Paulina Kosmela ◽  
Aleksandra Mielewczyk-Gryń ◽  
Łukasz Piszczyk

This article describes how new bio-based polyol during the liquefaction process can be obtained. Selected polyol was tested in the production of polyurethane resins. Moreover, this research describes the process of manufacturing polyurethane materials and the impact of two different types of fibers—synthetic and natural (glass and sisal fibers)—on the properties of composites. The best properties were achieved at a reaction temperature of 150 °C and a time of 6 h. The hydroxyl number of bio-based polyol was 475 mg KOH/g. Composites were obtained by hot pressing for 15 min at 100 °C and under a pressure of 10 MPa. Conducted researches show the improvement of flexural strength, impact strength, hardness, an increase of storage modulus of obtained materials, and an increase of glass transition temperature of hard segments with an increasing amount of fibers. SEM analysis determined better adhesion of sisal fiber to the matrix and presence of cracks, holes, and voids inside the structure of composites.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 80 ◽  
Author(s):  
Irene García-Moreno ◽  
Miguel Caminero ◽  
Gloria Rodríguez ◽  
Juan López-Cela

Most of the composite materials that are used in aerospace structures have been manufactured using a thermostable matrix, as epoxy resin. The region of stability of these polymers is defined by the glass transition temperature (Tg). However, operating temperatures close and above the Tg can cause a variation in the properties of the polymer and consequently, modify the mechanical properties of the composite material. Therefore, it is necessary to understand the failure mechanisms that occur in the material in order to ensure stability and durability. The effect of temperature and time of exposure on the impact and flexural mechanical responses of carbon/epoxy composites are studied in this work. For that purpose, ageing treatments at temperatures below and above the Tg have been considered and then, impact and flexural tests have been performed. It was observed that thermal ageing cause two different effects: at temperatures below the Tg, there is an increase of the maximum strength because of a post-curing effect; however, the mechanical properties decrease at higher temperatures of thermal ageing due to the thermo-oxidation of the epoxy resin and the loss of adhesion in the matrix/fibre interface.


2014 ◽  
Vol 634 ◽  
pp. 421-432 ◽  
Author(s):  
A.P.S. Martins ◽  
F.A. Silva ◽  
R.D. Toledo Filho

The aim of this research is the development and mechanical characterization of self-compacting soil cement composites with the incorporation of fly ash, metakaolin and sisal fibers. The mentioned composites, based on natural raw materials (raw earth and vegetable fibers), which are abundant in nature and have low cost and low environmental impact could be used as a more sustainable alternative than conventional industrialized materials for applications that don ́t require high structural performance (minimum strength equals to 2 MPa). A residual soil, constituted by 35% of fines and 65% of granular material was selected and the matrix was designed using a computational routine, based on the compressible packing model (CPM). The rheology of the matrix was adjusted by the slump flow test having as a target the spreading value of 600 mm. The matrix presented uniaxial compression strength of about 3.3 MPa after 28 days of curing. After 240 days of curing it was noticed an increase in the compressive strength to 7.5 MPa. This can be traced back to the pozzolanic reactions that takes place in the system. The soil cement composites were produced with three different sisal fiber contents: 0.5, 1.0 and 1.5% (in relation to the weight of dry soil) and a fiber length (Le) of 20 mm. Under compression, the incorporation of fibers has significantly influenced the post-peak behavior, increasing the toughness and the strain capacity. Under four point bending loading, the presence of fibers have contributed to increase the peak strength and the residual strength with expressive gains of toughness. The composites presented strength values as high as 1.8 MPa (1.0% of fibers) when they were subjected to bending loads. The use of sisal fibers as reinforcement modified the fracture mechanisms of the composites, changing it from a brittle to a ductile behavior.


2011 ◽  
Vol 282-283 ◽  
pp. 143-146
Author(s):  
Yang Liu ◽  
Jing Kun Yu

Allyl phenol-formaldehyde (APF) resin was synthesized by using phenol-formaldehyde (PF) resin and allyl chloride as raw materials and sodium hydroxide as alkali catalyst, and its curing process was investigated. The results showed that APF could not only dissolve in polar solvents, but also dissolve in nonpolar solvent. The APF started curing from around 180°C, and it was higher than PF. The curing took place by polyaddition at allyl double bonds, and a wider controllable curing range of 44°C was obtained. The cured surface of the matrix manifested a continuous phase.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


This article presents the results of studying the impact of housing and feeding conditions on broiler chickens of Hubbard RedBro cross, as well as the quality of products obtained when using floor and cage content, in a farm. It established that when receiving a mixed feed of own production using feed raw materials grown on a farm without the use of pesticides, a statistically significant decrease in potentially dangerous substances for animal health is recorded. Compared with factory feed, it has reduced the content of pesticides by 14 times, and mercury and arsenic by 24 times, cadmium by five times, and lead by ten times. The results of the study of economic indicators of growing Hubbard RedBro cross broiler chickens, as well as the chemical composition and quality of carcasses, indicated that there was no significant difference between the floor and cell conditions of keeping. Still, the use of a diet based on eco-feeds contributed to a statistically significant decrease in the concentration of toxic metals in the muscles of the poultry of the experimental groups. As a result, it found that the use of the studied compound feed in the diets of broiler chickens increased the indicators of Biosafety and ensured the production of environmentally safe ("organic") poultry meat products.


Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


Sign in / Sign up

Export Citation Format

Share Document