Flexural Properties of FDM Prototypes Made with Honeycomb and Sparse Structure

2014 ◽  
Vol 635 ◽  
pp. 169-173 ◽  
Author(s):  
Ivan Gajdoš ◽  
Ľuboš Kaščák ◽  
Emil Spišák ◽  
Ján Slota

The rapid prototyping (RP) process is capable of building parts of any complicated geometry in least possible time without incurring extra cost due of absence of tooling. Fused deposition modeling (FDM) is a fast growing RP technology due to its ability to build functional parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. The presented study focus on assessment of mechanical property flexural strength of part fabricated using fused deposition modeling (FDM) technology. The 3-point bending test was used, to determine flexural strength. Samples were made of polycarbonate on Fortus 400 mc machine from polycarbonate with slice height 0.127mm. The experiment was focused on influence of air-gap size between fibers and number of outline contours on selected mechanical properties of FDM prototypes determined 3-point bending test. The results show possibility to obtain weight reduction in printed parts with sparse structure with sufficient flexural strength and with reduced build time, compared to structure printed with default machine setting,. To obtain optimal processing parameters for 3D printing prototypes, it is necessary to execute further experiments, which could verify gathered results.

2020 ◽  
Vol 870 ◽  
pp. 73-80
Author(s):  
Nuha Hadi Jasim Al Hasan

3D printing innovation, as a quick prototyping, utilize plastic or metal as the crude material to print the genuine parts layer by layer. In this way, it is likewise called added substance producing procedure. Contrasted and conventional assembling innovation, 3D printing innovation has evident points of interest in assembling items with complex shapes and structures. Fused deposition modeling (FDM) is one of the most broadly utilized 3D printing advances. Fibers of thermoplastic materials, for example, polylactic acid is for the most part utilized as crude materials. The present examination will concentrate on the effect of the infill density, percent on the flexural strength of polylactic acid. Bending test was performed on different infill density, percent of specimens. According to ASTM D638.14 standards, samples for testing are made in different infill density, percent (20, 30, 40, 50 and 60 %) by using a polylactic acid in 3D machine printing and their tensile tested and the parameters include different fill density, layer high of 0.1 mm , 0.2mm and 0.3 have an effect on the mechanical characterized while the time of printing the sample would be increased with increasing of fill density%. The tensile strength of polylactic acid samples was found at different fill density and a layer thickness. According to test measuring results that the tensile strength, maximum 47.1,47.4, and 48 MPa at 30%,40%,and 50% fill density respectively and 0.1mm height layer and the tensile strength minimum at 60% and 70 % fill density and 0.1 mm height layer thickness. The higher strength results as higher layer thickness 0.3 mm as compared with 0.1 and 0.2 at 30%fill density.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Author(s):  
SIVADASAN M ◽  
N.K SINGH ◽  
ANOOP KUMAR SOOD

Investment Castings (IC) is one of the most economical ways to produce intricate metallic parts when forging, forming and other casting processes tend to fail. However, high tooling cost and long lead time associated with the fabrication of metal moulds for producing IC wax (sacrificial) patterns result in cost justification problems for customized single casting or small-lot production. Generating pattern using rapid prototyping (RP) process may be one of the feasible alternatives. For this purpose present study assessed the suitability of the fused deposition modeling (FDM) process for creating sacrificial IC patterns by studying FDM fabricated part thermal response at various temperatures. A series of experiments with RP patterns are conducted and a set of test castings are also made in steel for establishing feasibility. The build material used is acrylonitrile butadiene styrene (ABS). As an annexe to this work a concurrent attempt is also made to quantify the risk in using Selective Laser Sintering patterns for Investment Castings. Authors hope this work might establish applicability of ABS in IC and also lead the investigations to theoretically tone down the shell cracking tendency with Selective Laser Sintering patterns when Proprietary Duraform is used as the build material.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


Author(s):  
Martin Hallmann ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractWhen using additive manufacturing processes, the choice of the numerous settings for the process and design parameters significantly influences the build and production time. To reduce the required build time, it is useful to adapt the parameters with the greatest influence. However, since the contribution of the individual parameters is not readily apparent, a sensible choice of process and design parameters can become a challenging task.Thus, the following article presents a method, that enables the product developer to determine the main contributors to the required build time of additively manufactured products. By using this sensitivity analysis method, the contributors of the individual parameters can be analyzed for a given parametrized CAD model with the help of an analysis-based build time estimation approach. The novelty of the contribution can be found in providing a method that allows studying both design and process parameters simultaneously, taking the machine to be used into account. The exemplary application of the presented method to a sample part manufactured by Fused Deposition Modeling demonstrates its benefits and applicability.


2017 ◽  
Vol 23 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Anthony A. D’Amico ◽  
Analise Debaie ◽  
Amy M. Peterson

Purpose The aim of this paper is to examine the impact of layer thickness on irreversible thermal expansion, residual stress and mechanical properties of additively manufactured parts. Design/methodology/approach Samples were printed at several layer thicknesses, and their irreversible thermal expansion, tensile strength and flexural strength were determined. Findings Irreversible thermal strain increases with decreasing layer thickness, up to 22 per cent strain. Tensile and flexural strengths exhibited a peak at a layer thickness of 200 μm although the maximum was not statistically significant at a 95 per cent confidence interval. Tensile strength was 54 to 97 per cent of reported values for injection molded acrylonitrile butadiene styrene (ABS) and 29 to 73 per cent of those reported for bulk ABS. Flexural strength was 18 to 41 per cent of reported flexural strength for bulk ABS. Practical implications The large irreversible thermal strain exhibited that corresponding residual stresses could lead to failure of additively manufactured parts over time. Additionally, the observed irreversible thermal strains could enable thermally responsive shape in additively manufactured parts. Variation in mechanical properties with layer thickness will also affect manufactured parts. Originality/value Tailorable irreversible thermal strain of this magnitude has not been previously reported for additively manufactured parts. This strain occurs in parts made with both high-end and consumer grade fused deposition modeling machines. Additionally, the impact of layer thickness on tensile and flexural properties of additively manufactured parts has received limited attention in the literature.


2015 ◽  
Vol 20 ◽  
pp. 243-248 ◽  
Author(s):  
Hua Wei Guan ◽  
Monica Mahesh Savalani ◽  
Ian Gibson ◽  
Olaf Diegel

Sign in / Sign up

Export Citation Format

Share Document