Preparation of Porous Cylindrical Tubes Substrates from Zeolite and Clay for TiO2 Photocatalyst Coating

2018 ◽  
Vol 766 ◽  
pp. 270-275
Author(s):  
Nithiwach Nawaukkaratharnant ◽  
Thanakorn Wasanapiarnpong ◽  
Charusporn Mongkolkachit ◽  
Thanataon Pornphatdetaudom

Titanium dioxide (TiO2) is the one of photocatalyst materials that widely used for decolorization of organic compounds in wastewater by photocatalytic mechanism which can be activated by UV light. Unfortunately, in the case of fine TiO2 power, filtration of the powder after water treatment process is difficult. In this research, coating or immobilizing the TiO2 powder on substrates using for removing the color of lignin concentration is interesting. The objectives of this research are to prepare the floating porous cylindrical tube substrates composed of zeolite NaA and ball clay, and then to determine the efficiency of lignin degradation. Zeolite NaA powder, Suratthani ball clay and organic binder solution were mixed before extruding and cutting to be 1.5 cm diameter cylindrical tube with 2.5 cm in length and 0.3 cm in thickness. After that, the dried tubes were fired at 650 - 800 °C for 2 hours and were then coated with TiO2-P25 suspension before re-firing at 600 °C for 1 hour in an electrical furnace. The fired uncoated tubes were characterized in terms of phase composition, porosity and radial crush strength. From the XRD pattern of the tubes fired at 800 °C showed that the zeolite NaA phase was disappeared. On the other hand, the zeolite NaA phase was found in the samples fired at another lower temperature. For the coated tubes, polyurethane foam was filled into the hole to make the tubes can be floated on the water surface. After that, the photocatalyst degradation property by determining the decreasing of concentration of lignin solution under tungsten lamp irradiation of the floated tubes were tested.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 407 ◽  
Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Claudia Folli ◽  
Barbara Prandi ◽  
Tommaso Ganino ◽  
...  

The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.


The present paper is occupied with an experimental investigation into the variation of the specific heat at constant volume of carbon dioxide attending change of absolute density. The investigation is in continuation of a previous one, in which Carbon Dioxide, Air, and Hydrogen were the subjects of a similar enquiry over low ranges of density. It appeared to me desirable to extend the observations more especially in the case of carbon dioxide, because of the extended knowledge we already possess of its isothermals, and the fact that its critical temperature is within convenient reach. Other physical properties of the gas have also received much attention of recent years. It is also readily procured in a nearly pure state. The observations recorded in this paper extend, in the one direction, to densities, such that liquid is present at the lower temperature; and in the other, to a junction with the highest densities of the former paper. A plotting of the new observations is in satisfactory agreement with the record of the old. It reveals, however, the fact that the linear nature of the variation of the specific heat with density, deduced from the former results, is not truly applicable over the new, much more extended range observation. For convenience the chart at the end of this paper embraces the former results, and the present paper is extended to include the entire results on the variation of specific heat with density where the range of temperature, obtaining at each experiment, is approximately the same: that from air temperature to 100° C.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Bruno Andersons ◽  
Guna Noldt ◽  
Gerald Koch ◽  
Ingeborga Andersone ◽  
Anete Meija-Feldmane ◽  
...  

Abstract Thermal modification (TM) of wood has occupied a relatively narrow but stable niche as an alternative for chemical wood protection. There are different technological solutions for TM and not all details of their effects on wood tissue have been understood. The one-stage hydrothermal modification (HTM) at elevated vapour pressure essentially changes the wood’s composition and structure. In the present paper, the changes in three hardwood lignins (alder, aspen, and birch) were observed within the cell wall by means of cellular UV microspectrophotometry. The lignin absorbances in the compound middle lamella (CML) of unmodified wood are 1.7- to 2.0-fold higher than those in the fibre S2 layer. The woods were modified in the temperature range from 140 to 180°C, while in the lower temperature range (140°C/1 h), the UV absorbances are little affected. Essential changes occur in the range of 160–180°C and the UV data reflect these by absorbtion changes, while the absorbances at 278 nm rise with factors around 2 more in the S2 layer than in the CML. The absorbance increments are interpreted as polycondensation reactions with furfural and other degradation products of hemicelluloses with the lignin moiety of the cell wall.


1985 ◽  
Vol 52 (2) ◽  
pp. 253-256 ◽  
Author(s):  
E. I. Shen ◽  
K. S. Udell

A finite element solution to the steady-state problem of an inviscid bubble flowing at low Reynolds number in a cylindrical tube occupied by a second viscous phase was obtained. Interfacial tension forces were balanced against the viscous and pressure forces in order to locate the position of bubble-liquid interface. Velocities, pressures, and film thicknesses were obtained as a function of the capillary number. Specific applications of these results include the description of multiphase flow in tubes and porous media, and blood cell movement in small capillaries. The numerical results are compared with published theories and experiments.


1995 ◽  
Vol 23 (3) ◽  
pp. 203-211 ◽  
Author(s):  
P. J. Erens ◽  
A. A. Dreyer

This article describes a simple, low-cost experiment which could be used as a good educational example for students, combining the effects of radiation, natural convection, forced convection and condensation into one experiment. Many correlations are available for the calculation of the heat transfer from single, slender bodies (or tubes) immersed in a moving fluid. Even for a simple cylindrical tube the predicted heat transfer coefficients differ significantly from correlation to correlation. For more complex tube geometries fewer correlations could be found in the literature. The correlation by Gnielinski [1] appeared the most favourable since this single correlation is valid for many tube geometries (not just for cylindrical tubes). A simple experimental technique is described to measure the heat transfer coefficient on the outside of various tubular profiles in a fluid stream. This technique was then used to evaluate heat transfer coefficients on six different tubes, ranging from a circular cylinder to a complex T-shaped tube. The experimental data for all six tubes showed very good agreement with the correlation of Gnielinski.


2006 ◽  
Vol 955 ◽  
Author(s):  
Steven R. Smith ◽  
John C. Roberts ◽  
P. Rajagopal ◽  
J. W. Cook ◽  
E. L. Piner ◽  
...  

ABSTRACTLayers of GaN deposited on Si substrates have been studied using Thermal Admittance Spectroscopy (TAS) and Optical Admittance Spectroscopy (OAS). Transparent front-side contacts were used to facilitate the optical measurements. Six specimens were cut from the same location in two different wafers, and three samples were randomly chosen from other growths. A shallow level at EC − 0.051 eV was found in all the specimens using TAS. In some specimens this peak was asymmetric, indicating more than one level near this energy. Deeper levels were also seen in the high-temperature portion of the spectra, but were poorly resolved in most specimens. Illuminating the specimen with UV light at 25 K resulted in the thermal position of the peak shifting to a lower temperature, and hence, the calculated energy, of the peak shifting lower. The amplitude of the peak also decreased. Transient OAS measurements revealed the interesting phenomenon of negative persistent photo conductance at room temperature in some of the specimens when the illumination photon energy was less than the bandgap. The negative response time was very short. At lower temperatures, below 100 K, the negative response diminished, but the response time was still short. At wavelengths above the bandgap energy, normal transient response was seen, with a longer time constant.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 214
Author(s):  
Annamaria Halasz ◽  
Jalal Hawari ◽  
Nancy N. Perreault

The explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is of particular interest due to its extreme insensitivity to impact, shock and heat, while providing a good detonation velocity. To determine its fate under environmental conditions, TATB powder was irradiated with simulated sunlight and, in water, under UV light at 254 nm. The hydrolysis of particles submerged in neutral and alkaline solutions was also examined. We found that, by changing experimental conditions (e.g., light source, and mass and physical state of TATB), the intermediates and final products were slightly different. Mono-benzofurazan was the major transformation product in both irradiation systems. Two minor transformation products, the aci-nitro form of TATB and 3,5-diamino-2,4,6-trinitrophenol, were detected under solar light, while 1,3,5-triamino-2-nitroso-4,6-dinitrobenzene, 1,3,5-triamino-2,4-dinitrobenzene and mono-benzofuroxan were produced under UV light. The product identified as 3,5-diamino-2,4,6-trinitrophenol was identical to the one formed in the dark under alkaline conditions (pH 13) and in water incubated at either 50 °C or aged at ambient conditions. Interestingly, when only a few milligrams of TATB were irradiated with simulated sunlight, the aci-isomer and mono-benzofurazan derivative were detected; however, the hydrolysis product 3,5-diamino-2,4,6-trinitrophenol formed only much later in the absence of light. This suggests that the water released from TATB to form mono-benzofurazan was trapped in the interstitial space between the TATB layers and slowly hydrolyzed the relatively stable aci-nitro intermediate to 3,5-diamino-2,4,6-trinitrophenol. This environmentally relevant discovery provides data on the fate of TATB in surface environments exposed to sunlight, which can transform the insoluble substrate into more soluble and corrosive derivatives, such as 3,5-diamino-2,4,6-trinitrophenol, and that some hydrolytic transformation can continue even without light.


2019 ◽  
Vol 11 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Thabo Falayi

AbstractFly ash (FA) and Basic oxygen furnace (BOF) slag were used to as additives in the geopolymerisation of gold mine tailings (GMT).The aim of the research was to determine the effects of the two additives on the strength formation and mechanism of metal immobilisation by modified GMT geopolymers. GMT, FA and BOF were mixed, respectively, and made into a paste with the addition of potassium hydroxide (KOH) before curing at various conditions. 50% replacement of GMT in the starting materials gave the highest unconfined compressive strength (UCS). The UCS for BOF-based geopolymer was 21.44 Mega Pascals (MPa), whilst the one for FA-based geopolymer was 12.98 MPa. The BOF-based geopolymer cured at lower temperature (70 °C) as compared to the FA-based geopolymer (90 °C). The optimum KOH concentration was 10 and 15 M for BOF- and FA-based geopolymers, respectively. BOF-based geopolymers resulted in the formation of calcium silicate hydrate (CSH) phases which contributed to higher strength; whereas in FA-based geopolymers, no new structures were formed. BOF-based geopolymers resulted in over 94% iron (Fe) immobilisation, whereas FA-based geopolymers had 76% Fe immobilisation. Fe immobilisation was via incorporation into the CSH or geopolymer structure, whilst other metal immobilisations were thought to be via encapsulation. 12-month static leaching tests showed that the synthesised geopolymers posed insignificant environmental pollution threat for long-term use.


1973 ◽  
Vol 2 (4) ◽  
pp. 216-222
Author(s):  
B. Slevinsky ◽  
J. B. Haddow

A numerical method for the analysis of the isothermal elastic-plastic expansion, by internal pressure, of cylindrical tubes with various end conditions is presented. The Tresca yield condition and associated plastic flow rule are assumed and both non-hardening and work-hardening tubes are considered with account being taken of finite plastic deformation. Tubes which undergo further plastic deformation on unloading are also considered. Expansion of a cylindrical cavity from zero radius in an infinite medium is considered as a limiting case.


Author(s):  
A Praveen Kumar

In recent years, aluminium-composite hybrid tubular structures, which combine the stable and progressive plastic deformation of the aluminium metal with light-weight composite materials, are obtaining increased consideration for meeting the advanced needs of crashworthiness characteristics. This research article presents the experimental outcomes of novel aluminium/composite-capped cylindrical tubes subjected to quasi-static and impact axial loads. The influence of various capped geometries in the aluminium segment and three different fabrics of the composite segment in the cylindrical tube are investigated experimentally. The outcomes of the impact crushing test are also correlated with the quasi-static results of the proposed aluminium/composite-capped cylindrical tubes. The overall outcomes revealed that the crashworthiness characteristics of crushing force consistency and specific energy absorption of the aluminium-composite hybrid tubes are superior to those of the bare aluminium tubes. When the glass fabric/epoxy composite is wrapped to aluminium cylindrical tubes, the specific energy absorption increases about 23–30%, and the wrapping of hybrid glass/kenaf fabrics increases the specific energy absorption of almost 40–52%. Such a hybrid tubular structures would be of huge prospective to be used as effective energy-absorbing devices in aerospace and automotive applications. A further benefit of the composite-wrapping approach is that the composite might be retro-fitted to aluminium tubes, and the energy absorption capability is shown to be significantly enhanced by such utilization.


Sign in / Sign up

Export Citation Format

Share Document