Synthesis of Glutaraldehyde-Crosslinked Carboxymethyl Cellulose-Polyvinyl Alcohol Film as an Adsorbent for Methylene Blue

2020 ◽  
Vol 840 ◽  
pp. 35-42
Author(s):  
Dwi Siswanta ◽  
Rizky Wahyuni ◽  
Mudasir Mudasir

The glutaraldehyde (GA)-crosslinked carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) film had been synthesized and used as a methylene blue adsorbent. The films were prepared using a solution casting technique and characterized using FTIR spectrophotometer, SEM. Adsorption studies include pH, contact time, methylene blue initial concentration. Furthermore, the desorption study of films was carried out using NaCl, HCl and distilled water. The results of FTIR characterization showed similarities between the spectra of CMC-PVA-GA films with their component materials. The SEM image of CMC-PVA-GA films showed a non-porous surface. In the adsorption study, GA-crosslinked CMC-PVA films (1:2 w/w) exhibited the largest adsorption capacity of methylene blue at optimum conditions for adsorption at pH 7, contact time 200 min, methylene blue concentration of 200 mg L–1 which was 194 mg g–1. Methylene blue adsorption kinetic followed the pseudo second-order kinetic model and the Langmuir adsorption isotherm model. The desorption studies show that adsorption takes place through an ion exchange mechanism.

2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3054
Author(s):  
Yiming Zhou ◽  
Te Li ◽  
Juanli Shen ◽  
Yu Meng ◽  
Shuhua Tong ◽  
...  

This article reports effective removal of methylene blue (MB) dyes from aqueous solutions using a novel magnetic polymer nanocomposite. The core-shell structured nanosorbents was fabricated via coating Fe3O4 nanoparticles with a layer of hydrogel material, that synthesized by carboxymethyl cellulose cross-linked with poly(acrylic acid-co-acrylamide). Some physico-chemical properties of the nanosorbents were characterized by various testing methods. The nanosorbent could be easily separated from aqueous solutions by an external magnetic field and the mass fraction of outer hydrogel shell was 20.3 wt%. The adsorption performance was investigated as the effects of solution pH, adsorbent content, initial dye concentration, and contact time. The maximum adsorption capacity was obtained at neutral pH of 7 with a sorbent dose of 1.5 g L−1. The experimental data of MB adsorption were fit to Langmuir isotherm model and Pseudo-second-order kinetic model with maximum adsorption of 34.3 mg g−1. XPS technique was applied to study the mechanism of adsorption, electrostatic attraction and physically adsorption may control the adsorption behavior of the composite nanosorbents. In addition, a good reusability of 83.5% MB recovering with adsorption capacity decreasing by 16.5% over five cycles of sorption/desorption was observed.


2018 ◽  
Vol 18 (44) ◽  
pp. 5-11 ◽  
Author(s):  
Nizamettin Demirkıran ◽  
G D Turhan Özdemir ◽  
M Saraç ◽  
M Dardağan

In this study, the adsorption of methylene blue dye was examined by using pyrolusite ore as a low-cost alternative adsorbent source. Pyrolusite, which contains mainly MnO2, is a manganese ore. The effects of the initial concentration of dye, contact time, initial pH of solution, adsorbent dosage, stirring speed of solution, and average particle size of adsorbent on the adsorption of methylene blue were studied. It was found that the percentage of the adsorbed dye increased with increasing the amount of pyrolusite. While the initial dye concentration, initial pH, contact time, stirring speed, particle size, and adsorbent dosage were 25 ppm, 6, 90 min, 250 rpm, 63 µm, and 12 g/l, respectively, the efficiency of dye adsorption on pyrolusite ore was 99%. The isotherm and kinetic studies relating to this adsorption process were also made. It was found that the equilibrium data followed the Langmuir isotherm model while the kinetic of process could be described by the pseudo-second order kinetic model.


Author(s):  
Mona A. Aziz Aljar ◽  
Suad Rashdan ◽  
Ahmed Abd El-Fattah

Hazardous chemicals like toxic organic dyes are very harmful to the environment and their removal is quite challenging. Therefore there is a necessity to develop techniques, which are environment friendly, cost-effective and easily available in nature for water purification and re-mediation. The present research work is focused on the development` and characterization of the ecofriendly polyvinyl alcohol (PVA) and alginate (Alg) hydrogel beads incorporating natural bentonite (Bent) clay as beneficial adsorbents for removal of toxic methylene blue (MB) from industrial water. PVA−Alg/Bent nanocomposite hydrogel beads with different Bent content (0, 10, 20, and 30 wt%) were synthesized via external ionic gelation method. The designed porous and steady structure beads were characterized by the use of Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The performance of the beads as MB adsorbents was investigated by treating batch aqueous solutions. The experimental results indicated that the incorporation of Bent (30 w%) in the nanocomposite formulation sustained porous structure, preserved water uptake, and increased MB removal effi-ciency by 230 % compared to empty beads. Designed beads possessed higher affinity to MB at high pH 8, 30 °C, and fitted well to pseudo-second-order kinetic model a high correlation coefficient. Moreover, designed beads had a good stability and reusability as they exhibited excellent removal efficiency (90%) after six consecutive adsorption-desorption cycles. Adsorption process was found be combination of both monolayer adsorption on homogeneous surface and multilayer adsorption on heterogeneous surface. The maximum adsorption capacity of the designed beads system as calculated by Langmuir isotherm was found to be 51.34 mg/g, which is in good agreement with the reported clay-related adsorbents. The designed PVA−Alg/Bent nanocomposite hydrogel beads demonstrated good adsorbent properties and could be potentially used for MB removal from polluted water.


Author(s):  
Farhad Salimi ◽  
Keivan Tahmasobi ◽  
Changiz Karami ◽  
Alireza Jahangiri

Modified nano-silica with Bismuth and Iron adsorbent was synthesized to be used as an effective adsorbent material for methylene blue (MB) removal from water solution. The prepared samples were characterized using SEM, FTIR, XRD and TEM. The effect of experimental parameters such as pH, contact time and initial concentration on adsorption treatment were studied. Results indicated that the optimum conditions for maximum <strong>adsorption</strong> of 20 mg/L MB <strong>were:</strong> contact time of 20 minutes, pH= 5-6 and 8 gr/L adsorbent, the remaining MB in solution was 1.75%. Langmuir and Freundlich isotherms were employed to model the experimental results and the Freundlich isotherm was the best-fitting models for the experiment results. The kinetic data were also analyzed through pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model well depicted the kinetics of dyes adsorption on adsorbent.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2013 ◽  
Vol 361-363 ◽  
pp. 760-763 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Hao Li

The adsorption capacity was compared for the dye wastewater onto adsorbent MnO2. The effects of contact time and dosage of adsorbent were studied. The adsorption kinetics was analyzed. The results showed that MnO2 possessed higher adsorption capacity to Methylene blue than Methyl orange which the removal efficiency could reached 94.82%and 78.63% respectively under the conditions (the dosage1.2g/L, time 60min, initial dye concentration 50mg/L, pH7). The dynamical data fit well with the pseudo second order kinetic model. The MnO2 has higher Methylene blue adsorption capacity in short equilibrium times and are good alternative in wastewater treatment.


Author(s):  
A. Garba ◽  
◽  
A. Tahir ◽  
A. K. Yusuf ◽  
◽  
...  

This work reports the possibility of using sustainable waste from watermelon rinds as a potential candidate for the removal of Methylene Blue (MB) from aqueous solution in batch mode. The adsorbent was characterized by FTIR and SEM where the FTIR analysis shows peaks at 3370 cm-1 that corresponds to –OH stretching vibration for lignin, pectin and cellulose, at 1728 cm-1 corresponds to –C=O stretching of esters, carboxylic acids, and as well peak in the range of 1350 – 1000 cm-1 which indicates stretching vibration of alcohols and carboxylic acids. The availability of hydroxyl and carboxyl groups enhance high MB uptake at lower pH. The SEM image of raw adsorbent shows no development of pores, but after carbonization the pores were developed due to escape of volatile groups during carbonization and activation process. Adsorption studies using batch mode were performed by varying adsorption parameters such as adsorbent dosage, contact time, pH of the solution and initial dye concentration. The maximum capacity of the adsorbent was found to be 0.4g dosage, pH 4, 20mg/L of initial MB concentration and 60 minutes contact time that removes maximum of 197.5 mg g-1. The results indicated that watermelon rind is a successful agricultural waste that could be utilized for sustainable removal of cationic dyes in aqueous solutions.


2019 ◽  
Vol 20 (1) ◽  
pp. 130 ◽  
Author(s):  
Ani Iryani ◽  
Hadi Nur ◽  
Mardi Santoso ◽  
Djoko Hartanto

Rhodamine B (RB) and Methylene Blue (MB) dyes adsorption using adsorbent ZSM-5 synthesized from Bangka kaolin were investigated in this study. The effects of the initial concentration, contact time and temperature on the adsorption process were also analyzed. The effect of the initial concentration and contact time played an important role in the adsorption process; however, the effect differs significantly in both dyes. The temperature plays little role in the dye adsorption process. The results showed the adsorption process occurred in ZSM-5 adhere to Langmuir isothermal adsorption model showing that the adsorption process occurred to be monolayer. Based on the kinetics studies, the pseudo-first-order kinetic model represents the adsorption kinetics that occurs for both dyes onto the synthesized ZSM-5. Thermodynamic parameters namely Gibbs free energy (ΔG°), standard entropy changes (ΔS°) and standard enthalpy (ΔH°) reveal that the adsorption process onto ZSM-5 for both dyes was spontaneous and exothermic.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eze Nkechinyere Olivia ◽  
Ejimofor Samuel Adimchinobi ◽  
Onuegbu Theresa Uzoma

AbstractIn view of the global need to curb the effect of contaminants in waste water on our environment, the adsorption potentials of modified carbon from bambaranut (Vigna subterranean) shell was investigated for its efficiency in the removal of methylene blue from waste water. The adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) determination and Scanning Electron Microscopy (SEM), as well as other standard laboratory procedures. The prepared material was used for the uptake of MB from aqueous solution in a batch process, using UV spectrophotometer Model 752 at 620nm to analyze for the residual dye concentration. The effect of operational parameters such as contact time, adsorbent dosage, initial dye concentration and pH were analyzed to determine the factors controlling the rate of adsorption. Results from the study showed that the active carbon prepared was a porous material, with surface area of 193 m2/g, average pore size of about 10.98nm, and pore volume of 0.530cm3/g. With increase in initial dye concentration from 15mg/l to 75mg/l, a decrease in percent adsorption from 95.4% to 72.19% was observed. Increase in adsorbent dosage (from 0.1g to 0.5g), contact time (from 5 min to 40 min) and pH from 2 to 10 resulted in increase in percent adsorption from 84.03% to 98.83%, 54.24% to 84% and 48.17% to 84.03% respectively. About 98.83% removal of MB dye was achieved after 20 min, at pH of 6, temperature of 27±2oC, 0.5g weight of adsorbent and initial concentration of 60mg/l of 50ml MB dye solution. Langmuir isotherm best fits the equilibrium adsorption data with R2 = 0.996; the adsorption intensity obtained from Freundlich model (n>1) and the energy of adsorption obtained from the D-R model (< 8kJ/mol) suggested that physisorption dominates the adsorption of methylene blue onto the prepared activated carbon. Adsorption kinetic data was best described using Pseudo second order kinetic model (R2 = 0.996), giving equilibrium rate constant (k2) of 7690g mg-1 min-1. The characteristic results showed that bambaranut shell can be employed as an alternative to commercial adsorbents in the removal of methylene blue dye from aqueous solutions and waste water.


Sign in / Sign up

Export Citation Format

Share Document