Influence of Anti-Slip Aggregate on Properties of Hardened Concrete

2020 ◽  
Vol 870 ◽  
pp. 39-47
Author(s):  
Waseem Hamzah Mahdi ◽  
Layth Abdul Rasool Mahdi ◽  
Ruba H. Kadhim ◽  
Gufraan A. Kadhim

Nowadays, applying new materials is widely used in concrete construction to study their effects in enhancing the properties and the durability of concrete. This research includes studying the using of manufactured aggregate, which is so-called '' Anti-slip sand '' in specific proportions to know its influence on strength properties of normal strength hardened concrete which involves compressive strength, flexural strength, tensile splitting strength, and density. Anti-slip sand at different rates of (25%, 50%, 75%, and 100%) replaces the natural sand in the concrete mixture to investigate its effect on the properties of concrete. The study shows that the best results of concrete properties are found when replaced the natural sand by 100% of anti-slip sand. Compressive, flexural and tensile strengths of concrete are increased with increment ratios of (44%, 40%, and 20%) respectively compared with other concrete mixture contains only natural sand. In addition, the study shows that the density of hardened concrete is decreased from 2420 kg/m3 in concrete with 100% natural sand to 2360 kg/m3 with a decrement ratio of 2.5% in concrete with 100% anti-slip sand.

Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Gökhan Kaplan ◽  
Hasbi Yaprak ◽  
Selçuk Memiş ◽  
Abdoslam Alnkaa

The use of mineral admixtures and industrial waste as a replacement for Portland cement is recognized widely for its energy efficiency along with reduced CO2 emissions. The use of materials such as fly ash, blast-furnace slag or limestone powder in concrete production makes this process a sustainable one. This study explored a number of hardened concrete properties, such as compressive strength, ultrasonic pulse velocity, dynamic elasticity modulus, water absorption and depth of penetration under varying curing conditions having produced concrete samples using Portland cement (PC), slag cement (SC) and limestone cement (LC). The samples were produced at 0.63 and 0.70 w/c (water/cement) ratios. Hardened concrete samples were then cured under three conditions, namely standard (W), open air (A) and sealed plastic bag (B). Although it was found that the early-age strength of slag cement was lower, it was improved significantly on 90th day. In terms of the effect of curing conditions on compressive strength, cure W offered the highest compressive strength, as expected, while cure A offered slightly lower compressive strength levels. An increase in the w/c ratio was found to have a negative impact on pozzolanic reactions, which resulted in poor hardened concrete properties. Furthermore, carbonation effect was found to have positive effects on some of the concrete properties, and it was observed to have improved the depth of water penetration. Moreover, it was possible to estimate the compressive strength with high precision using artificial neural networks (ANN). The values of the slopes of the regression lines for training, validating and testing datasets were 0.9881, 0.9885 and 0.9776, respectively. This indicates the high accuracy of the developed model as well as a good correlation between the predicted compressive strength values and the experimental (measured) ones.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2612
Author(s):  
Piotr Smarzewski

This study investigates the fracture properties of high performance cementitious composites (HPCC) with four different types of fibres and with volume fraction content 3%. The four fibres are steel hooked end (S), polypropylene crimped (PP), basalt chopped (B), and glass (G) fibres. The tests were carried out in accordance with the RILEM recommendations. In order to examine the fresh properties of HPCC the slump flow tests were performed. Twelve fibre reinforced HPCC beam specimens with notch were cast and tested using central point loading experiments. In addition, experimental tests of the compressive strength and splitting tensile strength were carried out. The test results made it possible to obtain representative fracture parameters, such as the equivalent strengths, residual strengths, and fracture energy of fibre reinforced HPCC. The S fibre specimens showed the best performance in terms of workability, compressive strength, tensile splitting strength, and fracture energy at large deflection. On the other hand, G fibre specimens exhibited the best performance in terms of flexural strength, equivalent flexural strength at higher deflection, and residual flexural strength at lower deflection. In terms of equivalent flexural strength at lower deflection and residual flexural strength at higher deflection, basalt fibre specimens performed the best. On the contrary, polypropylene fibre reinforced beam specimens revealed the highest deflection capacity.


2014 ◽  
Vol 604 ◽  
pp. 157-160 ◽  
Author(s):  
Patricija Kara ◽  
Aleksandrs Korjakins

Waste glass is cementitious in nature when it is finely ground, and especially when it is ground in a wet environment it can be finer than Portland cement. The obtained borosilicate lamp waste glass slurry with a grain size of 0.713 – 8.088 μm has shown better fineness and stability to segregation in comparison to soda-lime and soda-alkaline earth-silicate waste glasses. Elaborated high efficiency concrete with borosilicate lamp waste glass showed 120 MPa compressive strength at 28 days and it can be considered as ecological due to reduced cement content for 20% in concrete mixture without changing concrete properties in a negative way, reduced CO2 and waste glass deposits.


Author(s):  
Shakir Hussain

Abstract: Polymer waste volumes have surged in recent years as a result of growing industrialization and fast improvements in living standards. In Malaysia, the majority of polymer waste is discarded rather than recycled. This circumstance results in major issues such as waste of natural resources and pollution of the environment. Polymer products, such as synthetic fibres, plastics, and rubber, are petrochemical compounds that disintegrate slowly in nature. Even after a long amount of time, plastic materials are not easily biodegradable. In reality, a wide range of waste materials can be used as a cement matrix inert. For the manufacture of the polymer concrete, trash bag plastics were employed as polymer wastes HDPE in this study (PC). The purpose of this research is to investigate the characteristics and characterisation of polymer HDPE as a coarse aggregate replacement in concrete. Temperatures of 160°C, 170°C, 180°C, 190°C, and 200°C were used in the heating procedure. By volumetric approach, five compositions of coarse aggregate with varied crushed stone: HDPE waste ratios of 0:100, 15:85, 30:70, 45:55, and 60:40 were utilised. The use of polymerwaste as coarse aggregate in traditional concrete was examined. With fresh and hardened concrete tests, the effects of polymer wastes on the workability and strength of the concrete were investigated. After 28 days, the compressive strength of the PCwas determined to be suitable for nonstructural use. The findings of the cost research revealed that the PC is more cost effective than traditional concrete. Keywords: Polymer Wastes HDPE; Coarse Aggregate; Compressive Strength; Properties


2019 ◽  
Vol 5 (3) ◽  
pp. 108
Author(s):  
Muhammad Malik Ibrahim ◽  
Priyanto Saelan

ABSTRAKSalah satu limbah yang dapat digunakan sebagai pengganti bahan pembuat beton adalah abu batu. Abu batu merupakan limbah dari proses pemecahan bongkahan batu. Ditinjau dari ukuran butirannya maka abu batu merupakan agregat halus. Abu batu memiliki penyerapan air yang lebih tinggi daripada pasir alami, maka dari itu untuk mendapatkan kelecakan campuran beton yang sama dengan kelecakan campuran beton menggunakan pasir alami, penggunaan abu batu sebagai agregat halus dalam campuran beton perlu tambahan air. Namun hal ini akan menyebabkan faktor air-semen bertambah. Sehingga hasil kuat tekan akan menurun. Hal ini sesuai dengan hubungan antara kuat tekan beton dengan faktor air-semen. Perekayasaan yang dilakukan adalah dengan menaikkan faktor granular (G) dan menaikkan kuat tekan rencana berdasarlan teori Dreux. Abu batu pada penelitian ini digunakan sebagai substitusi pasir alami dengan proporsi 0%, 20%, 40%, 60%, 80%, dan 100%. Hasil penelititan ini memperlihatkan penggunaan abu batu sebagai agregat halus lebih dari 40% akan sangat drastis menurunkan kuat tekan beton.Kata kunci: perekayasaan, substitusi, campuran beton, abu batu, agregat halus ABSTRACTOne of the wastes that can be used as a substitute for concrete materials is stone ash. Stone ash is a waste from the process of stone crusher. Consider from the size of the grain, stone ash as fine aggregate. Stone ash has a higher water absorption than natural sand, therefore to get the concrete workability that is the same as the concrete workability using natural sand, the use of stone ash as fine aggregate in the concrete mixture needs additional water. But this will cause the cement-water ratio to increase. So that the compressive strength will decrease. This is following the relationship between the compressive strength of concrete and the cement-water ratio. Engineering is done by increasing the granular factor (G) and increasing the compressive strength of the plan based on Dreux theory. Stone ash in this study was used as a substitute for natural sand with a proportion of 0%, 20%, 40%, 60%, 80%, and 100%. The results of this research show that the use of stone ash as fine aggregate of more than 40% will greatly reduce the compressive strength of the concrete.Keywords: engineering, substitute, concrete mixture, stone ash, fine aggregate


Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


Author(s):  
Mindaugas Daukšys ◽  
Ramūnas Pocius ◽  
Lukas Venčkauskas ◽  
Mindaugas Augonis ◽  
Šarūnas Kelpša

Author(s):  
Ali Ahmed ◽  
Shakir Ahmad ◽  
Muhammad Mannal Kaleem ◽  
Muhammad Bilal Zahid

Current study explores the possibility of improvement in various categories of concrete’s strengths (including tensile strength, flexural strength etc.) by using methylcellulose as an additive. The effect of methylcellulose on concrete’s compressive strength has also been investigated experimentally. Concrete samples were casted with several methylcellulose to binder ratios varying from 0.002 to 0.01 by weight of cement. Several tests were performed on concrete specimens including concrete cylinder and cube compression tests, split cylinder tests and modulus of rupture tests. Results showed that addition of methylcellulose increased the tensile strength of concrete. Addition of 0.2% of methylcellulose increased the tensile strength of concrete by 16%. This increase in tensile strength reached up to 73% of the control sample on addition of 1% methylcellulose. It was observed that the effect of methylcellulose on compressive strength of concrete depends upon the type of samples being tested (cube or cylinder). The compressive strength of concrete cylinders showed a plateau behavior with peak at 0.4% methylcellulose content with an increase of 18.7%. Effect of methylcellulose on concrete cylinder strength becomes insignificant beyond 0.6%. It was observed that addition of methylcellulose reduces the modulus of rupture values. The reduction in MOR was only 3% at 0.2% methylcellulose content but it grew to 30% at 1% methylcellulose content. The research presents an effective way of increasing tensile strength of concrete but without significant effect on concrete’s compressive strength and modulus of rupture values. These findings can be used to determine optimum content of methylcellulose to achieve desired performance from concrete depending upon the intended use.


Author(s):  
S. Nagajothi ◽  
S. Elavenil

AbstractGeopolymer concrete is a booming technology in the construction industry. Much research is occurring in geopolymer concrete, as it emits low carbon dioxide into the atmosphere, is eco-friendly material and is an alternative for cement. This research mainly focuses on the use of fly ash based geopolymer concrete in ambient curing conditions and the use of manufactured sand due to the scarcity of natural sand. Mainly studies have evolved on the workability, setting time and compressive strength by the effect of ground granulated blast furnace slag (GGBFS), manufactured sand (M-sand), alkaline activator solutions to binder ratio and the proportions of sodium silicate to sodium hydroxide (SS/SH) in geopolymer concrete and mortar. The experimental studies were carried out using nine geopolymer concrete mixes and the comparisons were made. The workability of concrete decreases by increasing the percentage of GGBFS, M-sand and the proportions of SS/SH whereas workability of concrete increases when increasing the alkaline liquid to binder ratio. The compressive strength of geopolymer mortar and concrete increases when the percentage of GGBFS and M-sand is increased, and it decreases by increasing the alkaline liquid content. There is no change in strength by decreasing the proportions of SS/SH.


Sign in / Sign up

Export Citation Format

Share Document