Effect of Initial Consolidation Stress Path on Shear Behavior of Calcareous Sand

2021 ◽  
Vol 871 ◽  
pp. 349-356
Author(s):  
Hong Xing Zhou ◽  
Shao Heng He ◽  
Min Gao ◽  
Zhi Ding ◽  
Tang Dai Xia

Calcareous sand is widely used as backfill material for land reclamation, but due to its special mechanical characteristics such as easily broken particles, calcareous sand foundation is facing more complex engineering problems. In this study, drained and undrained shear tests were carried out on calcareous sand samples from the South China Sea using K0 consolidation and isotropic consolidation conditions. It was found that the particle breakage of calcareous sand has obvious dependence on the initial consolidation stress path and drainage condition, thus showing different shear strength behavior. The particle breakage under drained shear is greater than that under undrained shear, and the particle breakage under isotropic consolidated shear is greater than that under K0 consolidated shear. The larger the particle breakage, the smaller the dilatancy and internal friction angle of calcareous sand. The dilatancy and internal friction angle of K0 consolidated specimen are larger than those of isotropic consolidated specimen. It is suggested that the actual stress path of calcareous sand should be considered in the engineering.

2014 ◽  
Vol 900 ◽  
pp. 445-448
Author(s):  
Zhi Hua Xu ◽  
Da Wei Sun

As the high concrete faced rockfill dams construction, grain breakage gradually become the factors that influence the high dam construction which can not be ignored. This text based on the master of rockfill of shuibuya dam as the experimental material, getting and analyzing the particle breakage data under different confining pressure through the large-scale triaxial test, and the results show that the particle breakage index increases with the increase of confining pressures. The relationship between particle breakage index and confining pressure can be expressed by formula;Particle breakage increase leading to reduced internal friction angle and the shear strength of rockfill, and the author newly introduced two broken variable to describe the relationship which can be expressed by the formula between the particle breakage and internal friction angle, it has certain reference value for establishing constitutive model considering particle breakage.


2020 ◽  
Vol 8 (9) ◽  
pp. 634
Author(s):  
Yang Wu ◽  
Xing Wang ◽  
Jian-Hua Shen ◽  
Jie Cui ◽  
Chang-Qi Zhu ◽  
...  

The effect of capillary water caused by heavy rainfall and groundwater level fluctuations can induce the erosion and collapse of island reef coral sand foundations. Here, the effects of water content (ω) on the shear strength parameters of coral gravelly sand are analyzed at the macro and micro scales by laboratory consolidated-drained triaxial compression and nuclear magnetic resonance tests. Furthermore, particle breakage characteristics of coral gravelly sand under the static load are discussed. With increasing ω, (1) the internal friction angle increases slightly (<1°) then decreases; (2) the apparent cohesion is more sensitive to the change in the ω; (3) with an increase from 5.4% to 21.3%, the bound water content remains almost unchanged; (4) the capillary water content is the main factor impacting the apparent cohesion; (5) the increase in free water content is the internal cause of the decreasing internal friction angle of coral gravelly sand with ω > 11.1%; and (6) the particle breakage increases, and there is an approximately linear relationship between the median particle diameter (d50) and relative breakage index (Br). The established physical model can reflect the influence of water content and plastic work and describe the evolution law of particle breakage.


2019 ◽  
Vol 275 ◽  
pp. 03006
Author(s):  
Weifeng Jin ◽  
Rongzhong Chen ◽  
Xin Wang ◽  
Zehai Cheng

Silica nano-particles are suspended in the colloidal silica and can be induced to gradually gel after the PH value changes. Thus colloidal silica can be utilized to rapidly seep through loose calcareous sand, and the silicon gel is gradually formed to bond sand particles. However, based on observation by scanning electron microscope(SEM), there are a lot of microcracks in the silica gel, which reduces the strength of the sand-gel composite. Therefore, in order to suppress crack growth, wood fibers are dispersed in the colloidal silica which still can seep through calcareous sand. 18 silicon-gel stabilized sand samples were prepared for tri-axial tests, where the concentration of colloidal silica is 20%, and wood fiber concentrations are 0%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, respectively. The results show that:(1) there exists an optimum ratio of wood fiber to colloidal silica, that is, as the concentration of wood fiber increases, the strength represented by the peak value of deviator stress rises first and then falls; (2) there are opposite trends between the two strength parameters, internal friction angle and cohesion, that is, when the wood fiber concentration is 0.04%, the cohesion reaches the maximum value and the internal friction angle reaches the minimum value; (3) The photos by SEM show that, there are wood fibers on the inner wall of the crack in the silica gel, which may reduce the extent of crack propagation and contribute to the strength of stabilized sand samples.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2015 ◽  
Vol 744-746 ◽  
pp. 593-596
Author(s):  
Yuan Meng

When calculating the dam slope failure process, traditional strength reduction method doesn't consider the difference of decay rate between cohesion and internal friction angle and discount the strength parameters for all elements. This paper uses two different reduction factors for material strength parameters, slope cohesion and internal friction angle. Based on the yield approach index criterion, we change the reduction region in time and put forward a double safety factor of dynamic local strength reduction method for engineering analysis of dam slope stability.


Author(s):  
Khelifa Harichane ◽  
Mohamed Ghrici ◽  
Said Kenai

Cohesive soils with a high plasticity index present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of soils can be improved by different techniques. The aim of this paper is to study the effect of using lime, natural pozzolana or a combination of both lime and natural pozzolana on plasticity, compaction and shear strength of two clayey soils classified as CH and CL according to the unified soil classification system (USCS). The obtained results indicated that for CH class clay soil, the plasticity index decreased significantly for samples stabilized with lime. On the other hand, for the soil classified as CL class clay, a high decrease in the plasticity index value was observed for samples stabilized with natural pozzolana compared to those stabilized with lime. Also, both the cohesion and internal friction angle in lime added samples were demonstrated to increase with time. The combination of lime and natural pozzolana exhibits a significant effect on the enhancement of both the cohesion and  internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear strength parameters than lime or natural pozzolana used alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jianwei Yue ◽  
Limin Zhao ◽  
Baoxi Zhang ◽  
Qingmei Kong ◽  
Siyuan Wang ◽  
...  

The silty clay in the lower reaches of the Yellow River is characterized by loose structure, low strength, and strong capillary effect. Based on the technology of ancient glutinous rice mortar and microbial-induced calcium carbonate precipitation (MICP), experiments on optimal mass ratio of cementitious liquid to bacterial liquid and optimal concentration of cementitious liquid for MICP and improved MICP technology were carried out by measuring the production of CaCO3, and direct shear test and unconfined compressive strength test of plain silt, glutinous mixing silt, and improved silt with MICP and modified MICP were conducted. The microstructure of the reaction products of MICP and improved MICP technology were also evaluated based on scanning electron microscopy (SEM). Research results showed that the mechanical properties of silt with glutinous rice slurry were effectively improved. With the increase in the concentration of glutinous rice slurry, the strength and internal friction angle of soil samples first increased and then decreased, and the cohesion presented a linear increasing trend. When the concentration of cementitious liquid was 0.5 M and the mass ratio of cementitious liquid to bacterial liquid was 2 : 1, the amount of CaCO3 formed was the most, and the conversion rate of Ca2+ was more than 80%. The improved MICP could increase the conversion rate of Ca2+ (93.44%). An improved MICP showed that glutinous rice slurry could improve bacterial activity, increase the urease content in the bacterial solution, and promote the production of CaCO3. Silt cohesion and internal friction angle of the silt were improved by the improved MICP technology, and the strengthening effect of mechanical properties of modified MICP-reinforced soil is better than that of the MICP-reinforced soil; conventional MICP technology could also improve the soil cohesion, but the improvement in the internal friction angle was not obvious. The SEM results indicated that compared with the reaction product of MICP technology, the structure of the product of improved MICP technology is more compact, resulting in a marked reinforcement of MICP performance with glutinous rice slurry. This study provides new insights into enhancing the mechanical behaviour of MICP-treated silt in the Yellow River Basin with glutinous rice slurry.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen

By embedding water content sensors and pore water pressure sensors inside the red clay slope on-site in Guiyang, Guizhou, shear tests were performed on soil samples at different depths of the slope under different weather. The changes of water content, pore water pressure, and shear strength index of the slope inside the slope under the influence of the atmosphere were tracked and tested, and the failure characteristics and evolution of the red clay slope were analyzed. It is believed that the depth of influence of the atmosphere on red clay slopes is about 0.7 m, rainfall is the most direct climatic factor leading to the instability of red clay slopes, and the evaporation effect is an important prerequisite for the catastrophe of red clay slopes. The cohesion and internal friction angle of the slope soil have a good binary quadratic function relationship with the water content and density. The water content and density can be used to calculate the cohesion and internal friction angle. Failure characteristics of red clay slopes: the overall instability failure is less, mainly surface failure represented by gullies and weathering and spalling, and then gradually evolved into shallow instability failure represented by collapse and slump. The damage evolution law is as follows: splash corrosion and surface corrosion stage⟶ fracture development stage⟶ gully formation stage⟶ gully development through stage⟶ local collapse stage⟶ slope foot collapse stage.


Sign in / Sign up

Export Citation Format

Share Document