Magnetic Properties and Crystal Structure of (Fe,Ni)2( P,Si) Quaternaries of Fe2P-Type

2020 ◽  
Vol 1001 ◽  
pp. 53-60
Author(s):  
Tian Yi Ren ◽  
Rui Hong Wang ◽  
Tian Liang Wang

(Fe,Ni)2(P,Si) compounds were synthesized and characterized. Ni substitution in Fe1.95-xNixP0.7Si0.3 is found to favor the formation of Fe2P-type hexagonal structure. The samples appear nearly single phase. Powder oriented in the magnetic field shows a pronounced uniaxial magnetic anisotropy with c axis as the easy axis. Magnetization measurements carried out along and perpendicular to the c crystal axis demonstrate a significant magnetic anisotropy, making these materials potential candidates for permanent magnet applications. We found that (Fe,Ni)2(P,Si) compound has no remanent magnetic field and coercivity, but it has a large magnetocrystalline anisotropy at room temperature. Therefore, doping Fe2P type compounds with a small amount of Ni and Si may be a promising way to create new materials with large magnetocrystalline anisotropy at room temperature, and thus rare-earth free permanent magnet.

SPIN ◽  
2017 ◽  
Vol 07 (04) ◽  
pp. 1750007 ◽  
Author(s):  
M. Y. Song ◽  
G. Y. Luo ◽  
J. G. Lin ◽  
M. G. Samant ◽  
S. S. P. Parkin

Spin pumping efficiency (SPE) in a ferromagnetic (FM)/Pt system relies on the effective magnetization damping of FM layer and the interface spin mixing conductance. However, there are very few studies on the influence of magnetic anisotropy of FM material on SPE. In this study, the spin pumping induced spin voltage [Formula: see text] in Fe3O4(58.9[Formula: see text]nm)/Pt(5.5[Formula: see text]nm) is investigated in two different orientations of the external magnetic field, one parallel and other perpendicular to the in-plane easy axis of Fe3O4. The value of [Formula: see text] with the magnetic field along the easy axis is 38% higher compared with that along the hard axis. The possible origin of this enhancement is investigated based on the model of ferromagnetic resonance induced spin pumping.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 611-613
Author(s):  
K. J. LIAO ◽  
W. L. WANG ◽  
X. L. SUN ◽  
J. W. LU ◽  
C. Y. KONG

The magneto resistive effect in nanocystalline diamond films was investigated at room temperature. The nanocystalline diamond films on silicon were deposited by hot filament chemical vapor deposition. The experimental results showed that a striking magneto resistive effect in p-type doped nanocystalline diamond films was observed. The relative changes in the resistivity of the films were about 0.3 at room temperature under the magnetic field of 5T, and increased with decreasing the geometrical size of the devices. It was found that the magneto resistive effect in the nanocystalline diamond films was less than that of epitaxial diamond films. This was ascribed to a large number of grain boundaries. The results are discussed in detail.


2010 ◽  
Vol 670 ◽  
pp. 66-73 ◽  
Author(s):  
Veronika Păltânea ◽  
Gheorghe Paltanea

In this paper it is presented a study of the magnetic anisotropy of non-oriented and grain oriented Fe-Si strips with the surface area of 280 x 30 mm2. The measurements were performed with a unidirectional single strip tester on Fe-Si strips cut at angles of 0, 15, 30, 45, 60, 75, 90 with the rolling direction. For the representation of the magnetic field strength at constant magnetic flux density it was used a program that interpolated the experimental results. It was determined the hard and the easy axis of the materials and the influence of the frequency on the anisotropy of the materials.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


2013 ◽  
Vol 753-755 ◽  
pp. 1571-1575
Author(s):  
Zhi Hua Liu ◽  
Yu Feng Huang ◽  
Jian Peng Li ◽  
Xin Wei Xu

Magnetic bead droplet's non-contacted manipulation can be realized in Electromagnetic MEMS, but how to achieve magnetic beads manipulation is the major problem. A new method of multi-layered flat coils coupled with permanent magnet was proposed. Firstly, the theory of magnetic bead manipulation was analyzed and the main factors affected the magnetic beads manipulation was identified; then the magnetic field of multi-layered flat coils and Stokes viscous resistance of magnetic beads were analyzed and simulated quantificationally; finally the magnetic bead capture area was got under different flow velocity. Consequently the feasibility and correctness of this method was verified.


2014 ◽  
Vol 525 ◽  
pp. 282-286
Author(s):  
Jia Xin You ◽  
Hui Min Liang ◽  
Kun Zhang ◽  
Guo Fu Zhai

The image of magnetic field is traditionally obtained by spreading magnetic powder manually or by sparse arrays of magnetic needles, obtaining the images of the magnetic field in different permanent magnet shapes and do repeated tests on the permanent magnet are in need. Based on programmable logic controller (PLC) motion control, the servo control and mechanical system have been built, the control strategy is discussed and the software is programmed. 2D FEM model of a test permanent magnet bar is built. Compared with the FEM simulation results, the system has achieved the goal that spreading magnetic powder quickly and evenly in the appointed area.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


2011 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastio Hinov ◽  
Iosko Balabozov ◽  
Kristina Krasteva

Several constructions of electromagnetic actuators with moving permanent magnet for Braille screen are studied. All they are formed from a basic one that consists of two coils, core and moving permanent magnet. The finite element method is used for modeling of the magnetic field and for obtaining the electromagnetic force acting on the mover. The static force-stroke characteristics are obtained for four different constructions of the actuator. The constructions with ferromagnetic disc between the coils ensure greater force than the ones without disc and can reach the required minimum force.


Sign in / Sign up

Export Citation Format

Share Document