In Situ Evaluation of the Joining Defects in a Pb-Free Soldered Joint

2021 ◽  
Vol 1016 ◽  
pp. 1448-1453
Author(s):  
Hikaru Tajima ◽  
Yuta Nakamura ◽  
Yasuyuki Miyazawa ◽  
Hidenobu Tameda

Conventionally, brass has toughness more than other metals, so there is a concern about its poor machinability. Therefore, improvement of machinability was attempted by adding lead to brass. This brass called free cutting brass, typified by JIS C3771. This free-cutting brass is used for piping components and machine parts. There is a concern about elution of the lead into drinking water. Hence, Drinking Water Quality Standards Law has been amended and it restricts lead content in the free cutting brass. Therefore, lead-free free-cutting brass with no lead or minimized content of lead is required.Consequently, a lead-free free-cutting brass had been developed to improve in machinability such as JIS C6931 and JIS C6803 that are added Si and Bi instead of lead respectively. Lead was also used for the solder for joining among pure copper pipes and brass valves. That causes elution of lead from the solder into drinking water. For this reason, Lead-free solder such as Sn-Sb and Sn-Ag-Cu have been used.A fire torch technology often was used for soldering of brass. The purpose of this study is investigating soldering-ability and wettability of lead-free solder on lead-free free-cutting brass. Hence, we investigated the soldering ability of lead-free solders, Sn-5%Sb and Sn-3%Ag-0.5%Cu, for pure Cu and brass joints with nonuniform heating by hot plate.

2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000235-000241
Author(s):  
Fred Fuliang Le ◽  
Rinse van der Meulen ◽  
Yoon Kheong Leong ◽  
Manoj Balakrishnan ◽  
Zunyu Guan

Abstract High melting point (HMP) lead-free solder, hybrid sinter and transient liquidus phase sinter (TLPS) are the emerging lead-free alternatives for the potential replacement of high-lead solder. Lead-free solder is perfectly compatible with existing high-lead soldering processes for clip bond packages. The benefit of hybrid sinter is that it has much higher thermal and electrical conductivity than lead-free or high-lead solder. In this study, ten materials (including lead-free solders, hybrid sinter paste and TLPS) were first evaluated via die shear test. With the initial material screening, two lead-free solders (solder 1 and 2), two hybrid Ag sinter pastes (sinter i and ii) and one TLPS proceeded to internal sample assembly. For the lead-free solders, a process optimization with the aid of vacuum reflow was made to reduce void rate. Due to the slow and unbalanced inter-diffusion of Ag-Cu sintering than Ag-Ag sintering, optimizations to enhance the hybrid Ag sintering include Ag finishing for the die metallization and Ag plating for the clip and bond area of the leadframe. In 0-hour package electrical test, solder 1 and sinter i passed and were sent for reliability testing while solder 2, sinter ii and TLPS failed due to intermetallic compound (IMC) cracking, material bleeding and die cracking, respectively. In the reliability testing, a basic scheme of thermal cycling (TC) 1000 cycles, intermittent operating life (IOL) 750 hrs and highly accelerated temperature and humidity stress test (HAST) 96 hrs was defined for the early feasibility study. 1 of 75 sinter i units failed by TC 1000 cycles due to separation between silver sinter structure and die bottom metallization. Solder 1 passed the basic scheme without defects, and next the material workability and clip bond strength need to be improved to the equivalent level of high-lead solders.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000631-000649
Author(s):  
Matthew A Thorseth ◽  
Mark Scalisi ◽  
Inho Lee ◽  
Sang-Min Park ◽  
Yil-Hak Lee ◽  
...  

Increasing market demand for portable high-performance electronic devices is requiring an increase in the I/O density in the chip packaging used to make these products. Flip-chip interconnects that enable advanced packaging utilize a C4 bumping process with lead-free solder to make the chip interconnection. However, with the decreasing chip size and tighter I/O pitch requirements that are needed to realize high-performance, Cu pillar plating has emerged as an enabling technology to meet the technical demands. Cu pillars, capped with a lead-free solder, allow for increased I/O density while still maintaining the standoff needed for proper thermal and electrical performance of stacked chips. With this realized performance, there is expected to be a significant increase in capacity of Cu pillar in the industry, requiring electrolytic Cu plating products with fast deposition rates in order to decrease wafer plating time and increase throughput. In this paper, Cu electroplating products are evaluated for plating performance at increased deposition rates for Cu pillar applications ranging from micropillar (<20 μm feature size), to standard pillar (20 – 75 μm feature size), redistribution layer (RDL) wiring, and the emerging fan-out wafer level packaging (FO-WLP), which encompasses megapillars (>150 μm feature sizes) as well as stacked via RDL designs. The chief performance criteria for evaluation is the ability to increase deposition rates while maintaining feature height uniformity, smooth and uniform feature morphology, and ability to plate a wide variety of feature sizes and shapes. Additionally, performance of these products is assessed on their ability to plate highly pure Cu deposits which enable void-free integration with lead-free solder without the need of (but is compatible with) a cost-added barrier layer.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2007 ◽  
Vol 353-358 ◽  
pp. 2573-2576 ◽  
Author(s):  
Fang Juan Qi ◽  
Li Xing Huo ◽  
Ya Ping Ding ◽  
Zhan Lai Ding

In recent years, several electronics manufacturers have been working toward introducing lead-free solder and halogen-free print circuit boards (PCBs) into their products. The key drivers for the change in materials have been the impending environmental legislations, particularly in Europe and Japan as well as the market appeal of ‘green’ products. The reliability of the new materials is an important determinant of the pace of adoption. Fairly extensive mechanical fatigue reliability data is also available for micro-joining soldered joint such as Ball Grid Array (BGA) with tin-lead solder. However, similar data is not available for BGAs assembled with lead-free solder. Mechanical reliability is a critical indicator for phone and BGA survival during repeated keypress, and to some extent during drop. In this paper, the mechanical bend fatigue of BGAs with tin-lead and lead-free solders on halogen-free substrates are examined respectively. A tin-silver-copper alloy was used as lead-free solder due to its increasing acceptance, and the results were compared to those from samples assembled with Sn63Pb37 solder. The reliability was examined at both low cycle and high cycle fatigue. Results show that the mechanical bend fatigue reliability of BGA assemblies with lead-free solder is higher than that of BGA assembly with tin-lead solder. Cross section and failure analysis indicated two distinct failure modes - solder joint and PCB failure. A 3-D parametric finite element model was developed to correlate the local PCB strains and solder joint plastic strains with the fatigue life of the assembly. The intermetallic compoumd (IMC) of micro-joining joint interface was analysised in the future in order to study on the effect of IMC on the reliability.


Sign in / Sign up

Export Citation Format

Share Document