Microstructure Evolution and Mechanical Properties of Mg-10.37Gd-3.66Y-2.27Zn-0.52Zr Alloy during Reciprocating Upsetting-Extrusion

2021 ◽  
Vol 1035 ◽  
pp. 264-272
Author(s):  
Guo Qin Wu ◽  
Jian Min Yu ◽  
Lei Chen Jia ◽  
Wen Long Xu ◽  
Yong Gang Tian ◽  
...  

The homogenized Mg-10.37Gd-3.66Y-2.27Zn-0.52Zr alloy was subjected to multi-passes reciprocating upsetting extrusion (RUE) deformation with variable temperature. The microstructure evolution and mechanical properties of as-homogenized and RUEed samples were investigated. The results showed that the area fraction of DRX grains gradually increased via the continuous consumption of coarse grains containing lamellar LPSO, and the content of the bulk LPSO phases gradually decreased due to continuous fragmentation. After three passes deformation, the microstructure was almost composed of completely DRXed grains. The LPSO phases with different morphologies were coordinated deformation by kinking, tearing, etc during RUE process. It is worth noting that after four passes, the lamellar LPSO phase did not disappear, but mixed with the fine DRXed grains together. In addition, a mass of particles were produced after each low temperature deformation, indicating that reducing the deformation temperature is beneficial to the dynamic precipitation. The yield tensile strength (TYS), Ultimate tensile strength (UTS) and fracture elongation (FE) of four passes deformed alloy reached 372.6 MPa, 320.8 MPa, 8.1%, respectively. The improvement of mechanical properties is attributed to the two main strengthening mechanisms: grain refinement and LPSO strengthening.

Author(s):  
Honggang Zhang ◽  
Jinhui Wang ◽  
Hongbin Ma ◽  
Yuan Yuan ◽  
Yongfeng Li ◽  
...  

Abstract The improvement of mechanical properties and the microstructure evolution through adding Sc to AZ61magnesium alloy were studied. The results indicated that the Mg17Al12 phase in the extruded AZ61 alloy was mainly distributed around the sub-structured and fine deformed grains, resulting in the nonuniform microstructure. The addition of Sc could effectively suppress the band-like precipitation of Mg17Al12 phase and improve the uniformity of microstructure. The grain sizes of the extruded alloys showed a trend of first decreasing and then increasing with the increase of Sc, which was mainly attributed to the secondary phase. The AZ61-0.5Sc alloy exhibited the best mechanical properties, its ultimate tensile strength and yield strength were 14.8MPa and 40.8MPa higher than those of the extruded AZ61 alloy, respectively, which was ascribed to the fine grains and abundant secondary phase in the alloy.


2013 ◽  
Vol 380-384 ◽  
pp. 4372-4375
Author(s):  
Li Zhang ◽  
Zheng Liu ◽  
Ping Li Mao

The microstructure evolution and mechanical properties of as-extruded Mg-2.5 Zn-0.5Y Mg alloy were investigated. The grainy intermetallic phases (I-phase and w-phase) observed in the as-cast Mg-2.5Zn-0.5Y alloy distributed homogeneously in the hot extruded alloys. Compared with the cast one, the extruded alloy shows predominant mechanical properties as the result of refined microstructure and the dispersed intermetallic phases formed during hot extrusion. The ultimate tensile strength and the yield tensile strength of the extruded alloy were 354.8 MPa and 305.9MPa respectively.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7145
Author(s):  
Yuanke Fu ◽  
Liping Wang ◽  
Sicong Zhao ◽  
Yicheng Feng ◽  
Lei Wang

In the present paper, the Mg-11Gd-2Y-1Zn alloys with different Al addition were fabricated by the gravity permanent mold method. The effect of Al content on microstructure evolution and mechanical properties of as-cast Mg-11Gd-2Y-1Zn alloy was studied by metallographic microscope, scanning electron microscope, XRD and tensile testing. The experimental results showed that the microstructure of as-cast Mg-11Gd-2Y-1Zn alloy consisted of α-Mg phase and island-shaped Mg3 (RE, Zn) phase. When Al element was added, Al2RE phase and lamellar Mg12REZn (LPSO) phase were formed in the Mg-11Gd-2Y-1Zn alloy. With increasing Al content, LPSO phase and Mg3 (RE, Zn) phase gradually decreased, while Al2RE phase gradually increased. There were only α-Mg and Al2RE phases in the Mg-11Gd-2Y-1Zn-5Al alloy. With the increase of Al content, the grain size decreased firstly and then increased. When the Al content was 1 wt.%, the grain size of the alloy was the minimum value (28.9 μm). The ultimate tensile strength and elongation increased firstly and then decreased with increasing Al addition. And the fracture mode changed from intergranular fracture to transgranular fracture with increasing addition. When Al addition was 1 wt.%, the maximum ultimate tensile strength reached 225.6 MPa, and the elongation was 7.8%. When the content of Al element was 3 wt.%, the maximum elongation reached 10.2% and the ultimate tensile strength was 207.7 MPa.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 853
Author(s):  
Lin Wang ◽  
Charlie Kong ◽  
Puneet Tandon ◽  
Alexander Pesin ◽  
Denis Pustovoytov ◽  
...  

The mechanical properties and microstructure evolution of an Al-Cu-Li alloy sheet processed via hot rolling (HR) (at 400 °C and 500 °C) or cryorolling (CR) (at −100 °C and −190 °C) and subsequence aging at 160 °C for 10 h were investigated. Before aging, the highest ultimate tensile strength of 502 MPa was achieved when the sheets were cryorolled at −190 °C, while the better ultimate tensile strength of 476 MPa and the best elongation rate of 11.1% was achieved simultaneously when the sheets were cryorolled at −100 °C. The refined grains and numerous uniform deformation-induced dislocations microstructures were responsible for the improved strength and enhanced ductility of the cryorolled sheets compared to that of the alloy processed by hot rolling with a low dislocation density zone (LDDZ) and high dislocation density zone (HDDZ). After aging at 160 °C for 10 h, the ultimate tensile strength further improved resulted from the greater precipitation strengthening, and the increased precipitates provided greater resistance to dislocations movement resulting in the increased ductility although the dislocation density decreased. The uniform dislocation microstructures in the cryorolled sheets provide numerous nucleation sites for the precipitates, leading to higher strength after aging.


2018 ◽  
Vol 385 ◽  
pp. 290-295 ◽  
Author(s):  
Ivan Zuiko ◽  
Marat Gazizov ◽  
Rustam Kaibyshev

Microstructure, precipitation behaviour and mechanical properties of an Al-5.64Cu-0.33Mn-0.23Mg-0.14Zr-0.11Ti (in wt. %) alloy subjected to thermomechanical processing (TMP) involving equal-channel angular pressing (ECAP) at ambient temperature to total strains (ε) of ~1 and ~2 followed by aging at 180°C for 0-28 h have been investigated and compared with conventional aging at the same temperature (T6 state). TMP led to significant increase in yield stress (YS) and ultimate tensile strength (UTS) and decrease in elongation-to-fracture as compared to the peak-aged T6 state. The YS, UTS and δ values attained after ECAP to ε ~ 2 followed by peak ageing were ~510 MPa, ~540 MPa and ~7.6%, respectively. The changes in mechanical properties were related to microstructure evolution and precipitation behaviour. TMP conditions obtaining a high-strength state of the Al-Cu-Mg alloy are discussed.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 384
Author(s):  
Andong Du ◽  
Anders E. W. Jarfors ◽  
Jinchuan Zheng ◽  
Kaikun Wang ◽  
Gegang Yu

The effect of lanthanum (La)+cerium (Ce) addition on the high-temperature strength of an aluminum (Al)–silicon (Si)–copper (Cu)–magnesium (Mg)–iron (Fe)–manganese (Mn) alloy was investigated. A great number of plate-like intermetallics, Al11(Ce, La)3- and blocky α-Al15(Fe, Mn)3Si2-precipitates, were observed. The results showed that the high-temperature mechanical properties depended strongly on the amount and morphology of the intermetallic phases formed. The precipitated tiny Al11(Ce, La)3 and α-Al15(Fe, Mn)3Si2 both contributed to the high-temperature mechanical properties, especially at 300 °C and 400 °C. The formation of coarse plate-like Al11(Ce, La)3, at the highest (Ce-La) additions, reduced the mechanical properties at (≤300) ℃ and improved the properties at 400 ℃. Analysis of the strengthening mechanisms revealed that the load-bearing mechanism was the main contributing mechanism with no contribution from thermal-expansion mismatch effects. Strain hardening had a minor contribution to the tensile strength at high-temperature.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a friction welding process was adopted to join dissimilar alloys of Ti-Al-4V to Nitinol. The effect of friction welding on the evolution of welded macro and microstructures and their hardnesses and tensile properties were studied and discussed in detail. The macrostructure of Ti-6Al-4V and Nitinol dissimilar joints revealed flash formation on the Ti-6Al-4V side due to a reduction in flow stress at high temperatures during friction welding. The optical microstructures revealed fine grains near the Ti-6Al-4V interface due to dynamic recrystallization and strain hardening effects. In contrast, the area nearer to the nitinol interface did not show any grain refinement. This study reveals that the formation of an intermetallic compound (Ti2Ni) at the weld interface resulted in poor ultimate tensile strength (UTS) and elongation values. All tensile specimens failed at the weld interface due to the formation of intermetallic compounds.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


Sign in / Sign up

Export Citation Format

Share Document