Corrosion Behavior and Mechanism of Oil Casing Steel in CO2 Salt Solution

2021 ◽  
Vol 1035 ◽  
pp. 534-538
Author(s):  
Xiao Jun Fang ◽  
Li Liu ◽  
Zhi Gang Yang ◽  
Yong Qiang Zhang

The influence of temperature, flow rate, PH value, and oxygen content on the corrosion law in the carbon dioxide salt solution of J55 oil casing was investigated by the corrosion weight loss method. The results showed that with the increase of temperature, the corrosion rate of J55 steel first increased and then decreased and the corrosion rate reached the maximum at 100°C. The corrosion rate was closely related to the formation of corrosion products. The increase of the flow rate speeded up the transfer rate of the corrosive medium to the metal surface and hindered the formation of FeCO3 on the metal surface. The corrosion rate was significantly higher than the corrosion rate under static conditions, and as the flow rate increased, the corrosion rate of J55 steel increased accordingly. The increase of the pH value gradually reduced the concentration of hydrogen ions, and cathodic reaction of hydrogen ion depolarization during metal corrosion process was inhibited, and the tendency to form an oxidizing protective film on the surface of carbon steel increased, thereby reducing the corrosion rate of metals. With the increase of oxygen content, there were both hydrogen evolution reaction of CO2 and oxygen absorption reaction caused by O2 in the cathode process. The corrosion rate of J55 steel gradually increased, and at the same oxygen content, the higher the carbon dioxide content, the greater the corrosion rate is.

2019 ◽  
Vol 3 (1) ◽  
pp. 27 ◽  
Author(s):  
Olha Stashkiv ◽  
Volodymyr Vasylechko ◽  
Galyna Gryshchouk ◽  
Ihor Patsay

Sorptive properties of the Transcarpathian clinoptilolite towards Pr(III) were studied under dynamic conditions. The sorption capacity of clinoptilolite under optimal conditions (sorbent grain diameter of 0.20–0.31 mm; pH 9.0, temperature of preliminary precalcination of 350 °C, and flow rate of the Pr(III) salt solution with the concentration of 1.0 μg·mL−1 through the sorbent of 5 mL·min−1) was equal to 47.5 mg·g−1. The best desorbent of Pr from the clinoptilolite was the 1 M solution of KCl acidified with HCl to a pH value of 3.0. The method of Pr(III) trace amounts preconcentration in a solid phase extraction mode with further determination of this REE via spectrophotometric technique was developed. The linearity of the proposed method was evaluated in the range of 2–100 ng·mL−1 with detection limit of 0.7 ng·mL−1.


2014 ◽  
Vol 955-959 ◽  
pp. 1927-1934 ◽  
Author(s):  
Pao Chi Chen ◽  
L.C. Lin

A pH-stat stirred-tank scrubber for capturing carbon dioxide using aqueous ammonia was used to explore the effects of process variables on the absorption of carbon dioxide. In order to maintain the pH value of the solution, aqueous ammonia was automatically introduced into the tank through the action of a pH-controller. The process variables were the pH of the solution, gas-flow rate, gas concentration and stirring speed. The absorption rate and mass-transfer coefficient could be determined by means of mass balance at a steady-state. It was found that the liquid-flow rate was 0.50-58.33 ml/min; the removal efficiency was in the range of 30.1-100% and the loading of CO2 was in the range of 0.02425-0.5661 mol-CO2/mol-NH3. The results also showed that the absorption rate was in the range of 5.14x10-5 to 6.27x10-4 mol/s-L, while the mass-transfer coefficient was in the range of 0.015 to 0.14 1/s. The effects of mixing on the absorption rate, mass-transfer coefficient and loading of CO2 were also discussed in this work.


Author(s):  
John Butchko ◽  
Bruce T. Gillette

Abstract Autoclave Stress failures were encountered at the 96 hour read during transistor reliability testing. A unique metal corrosion mechanism was found during the failure analysis, which was creating a contamination path to the drain source junction, resulting in high Idss and Igss leakage. The Al(Si) top metal was oxidizing along the grain boundaries at a faster rate than at the surface. There was subsurface blistering of the Al(Si), along with the grain boundary corrosion. This blistering was creating a contamination path from the package to the Si surface. Several variations in the metal stack were evaluated to better understand the cause of the failures and to provide a process solution. The prevention of intergranular metal corrosion and subsurface blistering during autoclave testing required a materials change from Al(Si) to Al(Si)(Cu). This change resulted in a reduced corrosion rate and consequently prevented Si contamination due to blistering. The process change resulted in a successful pass through the autoclave testing.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

2013 ◽  
Vol 22 ◽  
pp. 9-21 ◽  
Author(s):  
Chii Rong Yang ◽  
Tun Ping Teng ◽  
Yun Yu Yeh

In this study, we successfully combined RF magnetron sputtering of a pure Ti metal target and one-stage oxidation process with a wider oxygen ratio (10%-90%) and total sputtering flow rate (16-24 sccm) to produce TiO2thin films on a glass substrate. The crystallization, morphology, roughness, and thickness of the thin films were examined using XRD, HR-FESEM, AFM, and a profilometer. Subsequently, the photocatalytic performance was examined using a spectrometer and video tensiometer. The experimental results show that the TiO2thin films with a majority of anatase and higher roughness exhibit superior photocatalytic performance; the total sputtering gas flow rate of 18 sccm and oxygen content at 10% is the optimal option. Finally, an empirical formula to correlate the film thickness with deposition time was conducted for the sputtering flow rate of 18 sccm and the oxygen content of 10%.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Nur Farhana Jaafar ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Adnan Ripin ◽  
Mohamad Wijayanuddin Ali

Photocatalytic is one of the inexpensive and non-toxic techniques for degradation of organic pollutants into harmless substances such as water and carbon dioxide. In this study, simple electrolysis method was used in preparation of Ag/TiO2 and α-Fe2O3/HY catalysts. The physicochemical properties of the catalysts were studied using XRD, FTIR, FESEM-EDX and surface area analysis. The pH of solution plays an important role in the photocatalytic degradation of organic pollutants which influences the surface-charge properties of the catalysts. Ag/TiO2 and α-Fe2O3/HY were used as catalyst on degradation of 2-chlorophenol (2-CP) and methyl orange (MO), respectively. The effect of pH on degradation of 2-CP and MO were investigated over a pH range from 2 to 9. Higher degradation of 2-CP and MO were obtained at pH 5 (74%) and pH 2 (80%), respectively. This finding might be explained by the amphoteric performance of the catalyst using point zero charge (pHZPC). The pHZPC for Ag/TiO2 and α-Fe2O3/HY was found to be at pH 6.3 and pH 7.2, respectively. Hence, the activities of the catalysts may have been affected by the existence of a strong electrostatic field between the positively charged catalysts surface and negatively charged 2-CP and MO caused a pH value lower than their pHZPC give greater degradation.


1918 ◽  
Vol 27 (3) ◽  
pp. 399-412 ◽  
Author(s):  
H. G. Martin ◽  
A. S. Loevenhart ◽  
C. H. Bunting

Exposure of rabbits to an atmosphere of low oxygen content results in a stimulation of the cardiorespiratory systems, in an extension (hyperplasia) of red bone marrow and probably of a thyroid hyperplasia, with the further production of hydropic and hyaline degeneration in the cells of the parenchymatous organs. An atmosphere of high carbon dioxide and normal oxygen content produces, however, a stimulation of the cardiorespiratory systems, but no marrow extension and, in the concentrations used, but slight hydropic degeneration in the parenchyma of the glandular organs.


Sign in / Sign up

Export Citation Format

Share Document