Effect of Cd Substitution on Structural and Optical Properties of Zn1-xCdxSe Thin Films

2021 ◽  
Vol 1039 ◽  
pp. 382-390
Author(s):  
Arej Kadhim ◽  
Mustafa Kadhim ◽  
Haslan Abu Hassan

In this research, Zn1-xCdxSe alloys (x from 0 to 1) were synthesized by solid-state microwave (SSM) method of producing thermally evaporated thin films. The cubic structure and the elemental ratios of the films were studied using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The optical characterizations of the as-deposited film in terms of the energy band gap (Eg), photoluminescence (PL), and Raman shift spectra were conducted at the room temperature. The Eg values for the thin films from ZnSe to CdSe were 3.4 to 1.7 eV, respectively. The PL orange emission for ZnSe thin film at 565 nm, whereas 590 nm in the yellow region for CdSe thin film. From Raman shift spectra, the two longitudinal-optical phonon modes (1LO and 2LO) at 240, and 490 cm-1 are assigned for the ZnSe and CdSe thin films.

2013 ◽  
Vol 209 ◽  
pp. 111-115 ◽  
Author(s):  
Sandip V. Bhatt ◽  
M.P. Deshpande ◽  
Bindiya H. Soni ◽  
Nitya Garg ◽  
Sunil H. Chaki

Thin film deposition of PbS is conveniently carried out by chemical reactions of lead acetate with thiourea at room temperature. Energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), selected area electron diffraction patterns (SAED), UV-Vis-NIR spectrophotometer, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Photoluminescence (PL) and Raman spectroscopy techniques are used for characterizing thin films. EDAX spectra shows that no impurity is present and XRD pattern indicates face centered cubic structure of PbS thin films. The average crystallite size obtained using XRD is about 15nm calculated using Scherrer’s formula and that determined from Hall-Williamson plot was found to be 18nm. SAED patterns indicate that the deposited PbS thin films are polycrystalline in nature. Blue shift due to quantum confinement was seen from the UV-Vis-NIR absorption spectra of thin film in comparison with bulk PbS. The Photoluminescence spectra obtained for thin film with different excitation sources shows sharp emission peaks at 395nm and its intensity of photoluminescence increases with increasing the excitation wavelength. Raman spectroscopy of deposited thin film was used to study the optical phonon modes at an excitation wavelength of 488nm using (Ar+) laser beam.


2008 ◽  
Vol 22 (22) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. INTATHA ◽  
S. EITSSAYEAM ◽  
K. PENGPAT ◽  
N. UDOMKAN ◽  
P. LIMSUWAN ◽  
...  

The CdS : Ni films were fabricated on glass substrates by chemical bath deposition method (CBD), where Ni concentrations are 0%, 10%, 20%, 30% and 40%. X-ray diffractometry (XRD), Raman spectroscopy and electron spin resonance (ESR) were employed to study the film structures. The XRD patterns revealed the presence of cubic CdS and trace of NiS . The Raman spectra were observed at 300 and 600 cm-1, corresponding to the first and second orders of the longitudinal optical phonon modes. Both results confirm that slightly lower order of crystallinity of CdS : Ni was found at the higher concentration of Ni . The ESR spectra showed the presence of F-type defects in CdS : Ni films. The band gaps of the samples were found to increase with the increase of Ni concentration.


2019 ◽  
Vol 290 ◽  
pp. 153-159 ◽  
Author(s):  
Zhi Yin Lee ◽  
Sha Shiong Ng ◽  
Fong Kwong Yam ◽  
Zainuriah Hassan

The study highlights the effects of growth temperatures ranging from 500 to 650 °C on the properties of indium nitride (InN) thin films prepared by sol-gel spin coating method followed by nitridation, also, the growth mechanism was studied in depth. The findings revealed that the InN crystal growth was promoted at the growth temperature of 600 °C, by which the crystalline quality of the deposited thin films was improved and the densely packed InN grains were formed. However, thermal decomposition of InN was observed at increasing temperature to 650 °C. Apart from that, the infrared (IR) reflectance measurement shows the presence of transverse and longitudinal-optical phonon modes of wurtzite structure InN. These vibrational modes were found to be slightly shifted from the theoretical values as a result of the incorporation of oxygen contamination in the deposited thin films.


2015 ◽  
Vol 33 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. Zakria ◽  
Taj Muhammad Khan ◽  
Abbas Nasir ◽  
Arshad Mahmood

AbstractCd1−xZnxS thin films of variable compositions (x = 0.2, 0.4, 0.6, 0.8) were deposited on glass at room temperature by thermal evaporation process. The prepared samples were annealed at two different temperatures (300 °C, 400 °C) for 1 hour in ambient air. The effects of post-annealing on the structural and optical characteristics were investigated using X-ray diffraction (XRD), spectrophotometry, and Raman spectroscopy (RS) methods. XRD studies suggested that the annealed and as-deposited samples belong to wurtzite structure for all Zn concentrations with a preferential orientation along (002) plane. Spectrophotometry analysis of the samples revealed that the energy band gap decreased with annealing temperature. RS investigated different phonon bands and crystalline phases. Two longitudinal optical phonon modes (1-LO, 2-LO) corresponding to monophase hexagonal structure were observed for all Cd1−xZnxS samples. The observed red-shift and anti-symmetrical nature of the 1-LO phonon mode can be associated with annealing, while the overall blue-shift, except for x ⩽ 0.6, was caused by the structural disorders in periodic Cd atomic sub-lattices and broken translational symmetry. The spectroscopic results were strengthened by the XRD studies and their results are consistent.


2014 ◽  
Vol 895 ◽  
pp. 57-62
Author(s):  
Chee Yong Fong ◽  
Sha Shiong Ng ◽  
Fong Kwong Yam ◽  
Abu Hassan Haslan ◽  
Hassan Zainuriah

In this article, GaN thin films were successfully grown onp-type silicon (p-Si) substrates with orientation (100) through spin coating method followed by nitridation in ammonia ambient at various temperatures (750 °C, 850 °C, and 950 °C). The morphology of the GaN thin films were performed by using field-emission scanning electron microscopy. The results showed that the grain size increases with increasing nitridation temperature from 750 °C to 950 °C. Optical analysis of the GaN thin films was performed using Fourier transform infrared spectroscopy. It was confirmed from the results that the reflectance intensity of the transverse optical and longitudinal optical phonon modes of wurtzite GaN increases with increasing nitridation temperature. All the measured results show that nitridation temperature plays a very important role in improving the quality of the GaN thin films. Finally, the results revealed that the 950 °C was the optimal growth nitridation temperature for synthesizing GaN thin film.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


Sign in / Sign up

Export Citation Format

Share Document