Prevention of Seizure in Deep Drawing Using Plastic Die

2006 ◽  
Vol 505-507 ◽  
pp. 763-768 ◽  
Author(s):  
Yasunori Harada ◽  
T. Murao ◽  
Kenichiro Mori ◽  
Noriyuki Tsuchida ◽  
Kenzo Fukaura

In this study, deep drawing using plastic die was investigated to prevent seizure during forming. In the deep drawing process of aluminum and titanium sheets, seizure was found to occur during forming due to a high reactivity with other metals. For the prevention of seizure, plastic dies were used in this study. These plastic materials have a good resistant to seizing, since no seizure occurs in the contact surface of the metal and plastic material. Moreover, the effects of seizure and wearing die on the dimensional accuracy of drawn cups were examined using nylon die. The blanks used were pure aluminum, aluminum alloy A5052 and pure titanium. The blanks could be successfully formed with a water lubricant. To increase the dimensional accuracy of the drawn cups, deep drawing using fiber-glass-reinforced nylon and plastic composite steel die was also attempted. It was found that the use of plastic die was very effective in preventing of seizure.

2012 ◽  
Vol 19 (3) ◽  
pp. 347-358 ◽  
Author(s):  
Magdalena Vaverková ◽  
František Toman ◽  
Dana Adamcová ◽  
Jana Kotovicová

Study of the Biodegrability of Degradable/Biodegradable Plastic Material in a Controlled Composting EnvironmentThe objective of this study was to determine the degrability/biodegradability of disposable plastic bags available on the market that are labeled as degradable/biodegradable and those certified as compost. The investigated materials were obtained from chain stores in the Czech Republic and Poland. Seven kinds of bags (commercially available) were used in this study. One of them was a disposable bag made of HDPE and mixed with totally degradable plastic additive (TDPA additive). Another was a disposable made of polyethylene with the addition of pro-oxidant additive (d2w additive). One was labeled as 100% degradable within various periods of time, from three months up to three years, and four were certified as compostable. The test was carried out in a controlled composting environment. The biodisintegration degree of the obtained pieces was evaluated following a modified version of ČSN EN 14806 Norm "Packaging - Preliminary evaluation of the disintegration of the packaging materials under simulated composting conditions in a laboratory scale test" and a modified version of ČSN EN ISO 20200 "Plastics - Determination of the degree of disintegration of plastic materials under simulated composting conditions in laboratory-scale test" (ISO 20200:2004). The emphasis was put on determination whether the bags are degradable/biodegradable or not.


2013 ◽  
Vol 668 ◽  
pp. 616-620
Author(s):  
Shuai Huang ◽  
Huang Yuan

Computational simulations of indentations in elastic-plastic materials showed overestimate in determining elastic modulus using the Oliver & Pharr’s method. Deviations significantly increase with decreasing material hardening. Based on extensive finite element computations the correlation between elastic-plastic material property and indentation has been carried out. A modified method was introduced for estimating elastic modulus from dimensional analysis associated with indentation data. Experimental verifications confirm that the new method produces more accurate prediction of elastic modulus than the Oliver & Pharr’s method.


2021 ◽  
Vol 3 (1) ◽  
pp. 25-31
Author(s):  
Haudi Hasaya ◽  
Reni Masrida

Eco-paving block is a product used for construction consisting of sand and plastic mixes. In order to produce eco-paving blocks, the mixture of sand and concrete was substituted in part with sand and plastics. In order to properly mix plastics to create eco-paving blocks, a plastic smelter was used to generate heat and melt the plastic materials. The plastic material types used in this case was PETE or PETE, which has the characteristics of being flexible and high adhesive properties; along with ABS which can stand pressures. Based on the tests conducted with the plastic smelter using PET, ABS, and the combination of PET and ABS, the most promising result was shown with the combination of PET and ABS. This combination required 8 minutes 21 seconds for the plastics to become fully melted, and a temperature of 278oC. The combination of PET and ABS resulted in a mixture of plastics with strong adhesive properties and durability. This product could potentially be developed into eco-paving blocks. Additional studies regarding the optimum dosage combinations of PET and ABS plastics in eco-paving blocks can potentially be established in order to further optimize the usage of these plastics in eco-paving blocks.


2021 ◽  
Vol 888 ◽  
pp. 129-138
Author(s):  
Munzir Hadengganan ◽  
Djoko Sihono Gabriel

Plastic waste has become a big issue in the world for its large amount of plastic waste in the sea. Most of the plastic waste is plastic packaging which consists of flexible and rigid plastic packaging. This research discusses flexible plastic packaging. Until now, most researches on the loss of plastic materials discuss how to manage plastic waste disposal once it has been used by community: only a few discuss production cycle: while none of them discusses flexible plastic packaging area. This research aims to examine the number of mismanaged materials throughout flexible plastic packaging life cycle using a combination of Material Flow Analysis (MFA) and Life Cycle Analysis (LCA). Based on the literature review, interviews and observations conducted by the author to all stakeholders in the life cycle of flexible plastic packaging, mismanagement of plastic material occurred in each cycle, mostly caused by quality degradation of flexible plastic that could cause plastic waste was not acceptable in the mechanical recycle. The results of this study show that: (1) mismanaged material occurred in all cycles throughout the life cycles of flexible plastic packaging, (2) quality degradation is the main caused of mismanaged material in several cycles, and (3) the mismanaged materials in the life cycle of flexible plastic packaging were 98.29%.


1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.


2019 ◽  
Vol 297 ◽  
pp. 05007
Author(s):  
Andrey Kirichek ◽  
Sergey Barinov ◽  
Aleksandr Yashin

The article raises the problem of reducing pressure in the deformation zone during hardening of plastic materials by shock pulses. It is proposed to use the method of wave strain hardening and its multi-contact loading scheme as its solution. To accelerate the study of the influence of WSH technological parameters on the process of plastic material hardening, its finite element modeling is used. From the obtained patterns, the most significant technological parameters of the multi-contact WSH process were established and the ranges of their values providing effective hardening of plastic materials are given.


2011 ◽  
Vol 701 ◽  
pp. 15-20 ◽  
Author(s):  
Rupinder Singh ◽  
Varinderjit Singh

Rapid prototyping (RP) has been in evidence for the past twenty years and is being widely used in diverse areas, from the building of aesthetic and functional prototypes to the production of tools and moulds for technological prototypes. The purpose of the present study is to experimentally investigate the rapid moulding (RM) solutions for plastic components using polyjet printing (PP) technique. Starting from the identification of component/benchmark, prototypes with three different type of plastic material were produced, at different orientation and support material. Measurements on the coordinate measuring machine helped in calculating the dimensional tolerances of the plastic components produced. Some important mechanical properties were also compared to verify the suitability of the components. The study highlighted the best orientation, support material quantity and type of plastic material for the selected component from dimensional accuracy and economic point of view as RM solution for plastic components. This process ensures rapid production of pre-series technological prototypes and proof of concept at less production cost and time.


1999 ◽  
Vol 578 ◽  
Author(s):  
E. Reyes ◽  
C. Guerrero ◽  
V. González ◽  
M. Hinojosa

AbstractThe self-aff'me behavior of fracture surfaces of polymeric materials was qualitatively and quantitatively studied. SEM images of fracture surfaces of both polypropylene and polystyrene show Chevron marks at several magnifications. In addition, for polystyrene the mirror and Hackle zones were also observed. For quantitative analysis, the average roughness exponent, ζ, of height profiles generated by AFM images, was estimated by applying the variable bandwidth method. Values of ζ=0.788 and ζ=0.810 were obtained for polypropylene and polystyrene, respectively. These results are in very good agreement with the claimed universal exponent of 0.8 reported in the literature for other non-polymeric materials. By choosing the AFM appropriate operating conditions, measurements of roughness on plastic material surfaces could be performed.


2018 ◽  
Vol 33 ◽  
pp. 256-267 ◽  
Author(s):  
Anubhav Singh ◽  
Shamik Basak ◽  
Lin Prakash P.S. ◽  
Gour Gopal Roy ◽  
Maha Nand Jha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document