Synthesis of Al2O3-Ni3Al Cermets by Room-Temperature Ball Milling of Al, Ni and Al2O3 Mixtures

2006 ◽  
Vol 509 ◽  
pp. 123-128
Author(s):  
Enrique Rocha-Rangel ◽  
M.S. Moreno-Guerrero ◽  
A. Velásquez-Naranjo ◽  
Elizabeth Refugio-García

The synthesis of Al2O3-Ni3Al cermets with interpenetrating networks has been performed via a pressureless reactive sintering process. The synthesis has been induced by means of a solidstate reaction of Al + Ni + Al2O3 powders under intensive ball milling. The mixtures have been heat treated in an inert atmosphere (N2) in order to control the exothermic reaction between Ni and Al, with special care at temperatures near the melting point of Al. Dense and homogeneous microstructures have been obtained, composed by a matrix of Al2O3 reinforced with a Ni3Al intermetallic. Thermodynamic calculations indicate that such a cermet can be fabricated by in situ reaction synthesis. This suggests that a pressureless reaction sintering process may be a general route to synthesizing cermets with the prospect for the production of cermets with interpenetrating networks.

1996 ◽  
Vol 11 (11) ◽  
pp. 2884-2888 ◽  
Author(s):  
N. Claussen ◽  
D. E. Garcia ◽  
R. Janssen

A novel pressureless reaction sintering process is presented for the fabrication of Al2O3-aluminide alloys (3A). Compacts of intensively milled metal oxide-aluminum mixtures are heat-treated in vacuum or inert atmosphere such that the exothermic reactions take place in a controlled manner essentially at temperatures below the melting point of Al. Dense, homogeneous microstructures were obtained with a variety of Al2O3-matrix systems with interpenetrating networks of aluminides of Ti, Fe, Nb, Mo, Zr, Ni, etc. By adding modifiers in the form of oxides or metals, volume and phase composition as well as properties can be tailored in a wide range.


2015 ◽  
Vol 65 ◽  
pp. 1083-1090 ◽  
Author(s):  
M. Samadi Khoshkhoo ◽  
S. Scudino ◽  
T. Gemming ◽  
J. Thomas ◽  
J. Freudenberger ◽  
...  

1994 ◽  
Vol 350 ◽  
Author(s):  
John Short ◽  
Jan Kajuch ◽  
John J. Lewandowski

AbstractMechanical alloying(MA) and Reactive Sintering(RS) techniques were successfully used to produce Nb5Si3. Model laminates of mechanically alloyed Nb5Si3 and commercially pure niobium were prepared via vacuum hot pressing. Tensile properties for the as-received, vacuum heat treated and niobium with a solid solution of silicon were obtained at 298K and 77K. 298K bend tests were conducted in an in situ deformation stage in a SEM. 77K bend tests were also conducted. Toughness values are correlated to the ligament properties and effect of constraint.


1994 ◽  
Vol 364 ◽  
Author(s):  
D. E. Alman ◽  
J. A. Hawk ◽  
R. D. Wilson

AbstractReactive synthesis directly forms compounds from their elemental constituents. In this U.S. Bureau of Mines study the microstructure, hot-hardness and tensile properties of alloys and composites based on TiAl and Ti2AlNb were studied. Ti2AlNb sheets were processed from elemental Ti, Al and Nb foils. The elemental foils were consumed during processing, leaving a microstructure consisting of three phases: O (orthorhombic Ti2AlNb), B2 (ordered cubic Ti), and α2 (Ti3Al). The composite sheet structures were heat-treated to produce a microstructure consisting of O lathes in a B2 matrix. A significant advantage of reactive synthesis is the ease of formation of complex shapes prior to synthesis of the aluminide. TiAl-based alloys and in situ TiAl/boride and TiAl/Ti5Si3 composites were produced from elemental mixtures of Ti and Al with either additions of B or Si powders. The hot-hardness and tensile properties of these alloys and composites are reported. The Kirkendall porosity associated with reactive sintering of TiAl can be eliminated by simultaneously reactive sintering TiAl and Ti5Si3.


2010 ◽  
Vol 105-106 ◽  
pp. 70-74
Author(s):  
Jian Guang Xu ◽  
Hui Qiang Li ◽  
Hou An Zhang

SiC reinforced MoSi2 composites have been successfully prepared by pressureless sintering from mechanical-assistant combustion synthesized powders. The sintering temperatures and holding time were 1500°C~1650°C at a heating rate of 10K/min and 1 hour, respectively. The microstructure and mechanical properties of the as-sintered composites were investigated. SEM micrographs of SiC/MoSi2 composites showed that SiC particles were homogeneously distributed in MoSi2 matrix. The Vickers hardness, flexural strength and fracture toughness of the SiC/MoSi2 composites were up to 15.50GPa, 468.7MPa and 9.35MPa•m1/2, respectively. The morphologies of fractured surface of the composites revealed the mechanism to improve mechanical properties of MoSi2 matrix. At last, the cyclic oxidation behavior of the composites was discussed. The results of this work showed that in situ SiC/MoSi2 composite powder prepared by MASHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature mechanical and anti-oxidation properties could be achieved.


2008 ◽  
Vol 368-372 ◽  
pp. 951-954 ◽  
Author(s):  
Jian Guang Xu ◽  
Hou An Zhang ◽  
Guo Jian Jiang ◽  
Wen Lan Li

SiC whisker reinforced (Mo,W)Si2 composite powder has been successfully synthesized by a novel process, named as chemical oven self-propagating high temperature synthesis (COSHS). The mixtures of Si and Ti powders were ignited as chemical oven. XRD result shows that the combustion product is mainly composed of (Mo,W)Si2 solid solution and SiC phases. SEM photo and EDS result show that SiC whisker is formed during this process. The as-prepared SiCW/(Mo,W)Si2 composite powder has been pressureless sintered. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite are 91.2% and 92.2%, respectively. The composite containing SiC whisker and (Mo,W)Si2 solid solution has higher Vickers hardness than monolithic MoSi2. Especially the room-temperature flexural strength of the composite is higher than that of monolithic MoSi2, from 135.5MPa for MoSi2 to 235.6MPa for composites with 10 vol.% WSi2 and 15 vol.% SiC, increased by 73.9%. The morphology of fractured surface of composite reveals the mechanism to improve flexural strength of MoSi2. The results of this work show that in situ SiCW/(Mo,W)Si2 composite powder prepared by COSHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature flexural strength could be achieved. It could be a cost-effective process for industry in future applications.


Author(s):  
J. A. Sutliff ◽  
B. P. Bewlay

In-situ composite Nb-Si alloys have been studied by several investigators as potential high temperature structural materials. The two major processing routes used to fabricate these composites are directional solidification and extrusion of arc-cast solidified ingots. In both cases a stable microstructure of primary Nb dendrites in a eutectoid of Nb and Nb5Si3 phases is developed after heat treatment. The Nb5Si3 phase is stable at room temperature and forms as a decomposition product of the high temperature Nb3Si phase. The anisotropic microstructures developed by both directional solidification and extrusion require evaluation of the texture to fully interpret the fracture and other orientation dependent mechanical behavior of these composites.In this paper we report on the microstructural characterization of a directionally solidified (DS) and heat treated Nb-16 at.%Si alloy. The microtexture of each of the phases (Nb, Nb5Si3) was determined using the Electron BackScattering Pattern (EBSP) technique for electron diffraction in the scanning electron microscope. A system employing automatic diffraction pattern recognition, crystallographic analysis, and sample or beam scanning was used to acquire the microtexture data.


1993 ◽  
Vol 309 ◽  
Author(s):  
J. Nucci ◽  
H. Neves ◽  
Y. Shacham ◽  
E. Eisenbraun ◽  
B. Zheng ◽  
...  

AbstractCopper thin films were deposited by sputtering, electron beam evaporation, and electroless plating onto nitride membranes for TEM analysis. The samples were heat treated in-situ from room temperature to 600 °C for structural and chemical analysis. The as-deposited and heat treated microstructures were investigated. Orientation changes with heat treatment and reactions among the sample layers were analyzed by electron diffraction. This work provides baseline information for a study of the thermal evolution of copper lines.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw5519 ◽  
Author(s):  
Jin Li ◽  
Jaehun Cho ◽  
Jie Ding ◽  
Harry Charalambous ◽  
Sichuang Xue ◽  
...  

Ceramic materials have been widely used for structural applications. However, most ceramics have rather limited plasticity at low temperatures and fracture well before the onset of plastic yielding. The brittle nature of ceramics arises from the lack of dislocation activity and the need for high stress to nucleate dislocations. Here, we have investigated the deformability of TiO2 prepared by a flash-sintering technique. Our in situ studies show that the flash-sintered TiO2 can be compressed to ~10% strain under room temperature without noticeable crack formation. The room temperature plasticity in flash-sintered TiO2 is attributed to the formation of nanoscale stacking faults and nanotwins, which may be assisted by the high-density preexisting defects and oxygen vacancies introduced by the flash-sintering process. Distinct deformation behaviors have been observed in flash-sintered TiO2 deformed at different testing temperatures, ranging from room temperature to 600°C. Potential mechanisms that may render ductile ceramic materials are discussed.


2013 ◽  
Vol 401-403 ◽  
pp. 635-638
Author(s):  
Ping Luo ◽  
Shi Jie Dong ◽  
Zhi Xiong Xie ◽  
Wei Yang ◽  
An Zhuo Yangli

TiC-TiB2 composite ceramics were successfully fabricated via planetary ball milling of 72 mass% Ti and 28 mass % B4C powders, followed by low temperature sintering process at 1200°C. The microstructure of the ball-milled powder mixtures and composite ceramics were characterized by Differential thermal analysis equipment (DTA), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results showed that the ball-milled powder mixtures (Ti and B4C powders) were completely transformed to TiC-TiB2 composite ceramics as the powders were milled for 60 h and sintered at 1200°C for 1 h. The formation mechanism of the TiC-TiB2 composite was discussed. The high energy ball milling and necessary sintering for the powder mixtures plays an important role in the formation of the composites.


Sign in / Sign up

Export Citation Format

Share Document