Direct Manufacturing of Titanium Parts by Cold Spray

2009 ◽  
Vol 618-619 ◽  
pp. 505-508 ◽  
Author(s):  
Mahnaz Z. Jahedi ◽  
Saden H. Zahiri ◽  
Stefan Gulizia ◽  
Bill Tiganis ◽  
C. Tang ◽  
...  

Titanium has excellent properties as an engineering material such as light weight, high strength and high resistance to corrosion and fracture. However, the high cost associated with the materials and current process technologies is not conducive to higher-volume production for consumer industry. It appears near net shape manufacturing has to be used to manufacture titanium and titanium alloys parts. Investigators are exploring several near net shape technologies. However, most of these technologies involve melting and solidification. Each new layer starts out molten, solidifies, and must eventually cool to room temperature. Oxygen sensitive material such as titanium needs to be processed under vacuum. There is a great need for revolutionary coating and direct Manufacturing technology to extend the application of titanium and titanium alloys from top end, aerospace and biomedical to lower end consumer use. It appears Cold Spray Technology can deliver a suitable and cost effective coating and direct manufacturing solution for titanium industry. CSIRO Light Metals Flagship has pioneered in developing direct manufacturing technologies to fabricate titanium parts using Cold Spray. Mechanical properties of Cold Spray titanium in as sprayed and heat treated conditions are presented and compared with wrought titanium. Some of technologies such as Cold Spray for direct manufacturing of seamless titanium pipes are discussed.

2018 ◽  
Vol 941 ◽  
pp. 1088-1094 ◽  
Author(s):  
Ajit Pal Singh ◽  
Fei Yang ◽  
Rob Torrens ◽  
Brian Gabbitas ◽  
Leandro Bolzoni

Blended Elemental Powder Metallurgy is a very attractive method for producing titanium alloys, which can be formed near net shape and have freedom in composition selection. However applications are still limited due to affordability. In this paper, we will discuss a possible cost-effective route, combining vacuum sintering, extrusion, and heat treatment, to produce titanium alloys with similar or better mechanical properties than that of ingot metallurgy titanium alloys. The as-processed material with an oxygen content of 0.34 ± 0.005 wt.% was subjected to heat treatments such as β annealing plus ageing and α+β annealing without ageing to attain a typical lamellar/Widmanstätten/basketweave type structure with a large variation in terms of the microstructural features such as grain size, colony size, inter-lamellar spacing, thickness of grain boundary α, and size of individual lamellar. From mechanical property data attained here, it was apparent that annealing in high α-β region gave a much better combination of mechanical properties: yield strength (860-902 MPa), ultimate tensile strength (1060-1084 MPa) and ductility/plastic strain (11.5-13.6%). The hardness values of heat treated material varied between 346-376 Vickers hardness (36.8-44.5 Rockwell hardness).


Author(s):  
Lorena Perez ◽  
Jake Colburn ◽  
Luke N. Brewer ◽  
Michael Renfro ◽  
Tim McKechnie

Abstract In this work; Inconel 718 gas-atomized powder was successfully heat treated over the range of 700-900°C. As-atomized and as-heat treated powders were cold sprayed with both nitrogen and helium gasses. Cold spray of high strength materials is still challenging due to their resistance to particle deformation affecting the resulting deposit properties. Powder heat treatment to modify its deformation behavior has recently been developed for aluminum alloy powders; however; there is no literature reported for Inconel 718 powders. The microstructural evolution of the powder induced by the heat treatment was studied and correlated with their deformation behavior during the cold spray deposition. Deposits sprayed with heat-treated powders at 800 and 900 °C and nitrogen showed less particle deformation and higher porosity as compare to as-atomized deposit associated to the presence of delta phase in the powders precipitated by the heat treatment. In contrast; deposits sprayed with helium using both powder conditions; as-atomized and as heat-treated powders; showed high particle deformation and low porosity indicating that the type of gas has a greater effect on the particle deformation than the delta phase precipitated in the heat-treated powders. These results contribute to understanding the role of powder microstructure evolution induced by heat treatment on the cold spray deposits properties.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 432
Author(s):  
Alino Te ◽  
Bryer C. Sousa ◽  
Brajendra Mishra ◽  
Danielle L. Cote

The use of cold spray deposition, coupled with diffusion-driven thermal postprocessing, is considered herein as a surface modification process such that near-surface microstructural, micromechanical, and microchemical property improvements can be procured for cost-effective and common aluminum alloy castings. Since the present work was an exploratory investigation into the realm of cold spray induced, high-pressure diecast aluminum subsurface property development and evolution, as well as surface modification, one significant aim was to formalize a set of fundamental observations for continued consideration of such an approach to achieving premium aluminum alloy properties from cost-effective alternatives. Nickel, copper, and titanium cold spray modified near-surface regions of the cost-effective high-pressure diecast A365 system was considered. Near-surface, subsurface, and surface evolution was documented across each of the three pure metal coatings. The analysis was continued across two postprocessing coating-substrate atomic diffusion inspired heat-treated conditions as well. Using energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, optical microscopy, and various insights gleaned from an original contextualization of the relevant cold spray literature, noteworthy results were recorded and discussed herein. When copper feedstock was employed alongside thermal postprocessing, diverse surface-based intermetallic compounds formed alongside exotic diffusion zones and severely oxidized regions, thus eliminating thermally activated copper cold-sprayed consolidations from future work too. However, both nickel and titanium cold spray surface modification processing demonstrated potential and promise if correct processing stages were performed directly and chronologically. Consequently, a platform is presented for further research on cold sprayed surface microstructural and property modification of cost-effective alloyed aluminum castings.


2020 ◽  
Vol 321 ◽  
pp. 03010
Author(s):  
Oliver Levano ◽  
Nicholas Weston ◽  
Jacob Pope ◽  
Adam Tudball ◽  
David Lunn ◽  
...  

Titanium alloys are used extensively in the aerospace sector due to the good combination of high strength-to-weight ratio and corrosive resistance. Many aerospace components are exposed to extreme service stress states and temperatures, which in some applications could compromise the component’s performance if a single titanium alloy is used. A potential solution to this issue could be the combination of dissimilar titanium alloys in subcomponent regions, achieved through consolidating powders via field assisted sintering technology (FAST-DB) and subsequent hot forging (FAST-forge). In this paper, near net shape titanium-titanium alloy demonstrator components are produced from oversized AM powders in just two hybrid solid-state steps; FAST-DB and hot forging.


Author(s):  
R. Oro ◽  
M. Jaliliziyaeian ◽  
J. Dunkley ◽  
C. Gierl-Mayer ◽  
H. Danninger

The combination of alloying elements in the form of a masteralloy (MA) powder gives the possibility to protect oxygen-sensitive elements against oxidation and to promote the formation of a liquid phase that enhances the sintering mechanisms. As compared to the prealloying approach, the MA route has lower impact on compressibility and provides more flexibility in the selection ofthe final composition. Knowledge of the chemical aspects of sintering combined with the possibility to tailor the properties of sintered steels through the use of specific MA compositions and with the development of novel atomizing methods to produce MA powders may, in the near future, position the MA approach as a very interesting alternative to conventional alloying methods. In this work, sintered steels containing cost-effective Fe–Mn–Si masteralloysare processed at increasing temperatures in the range between 1120 and 1300 °C. The combination with different base powders provides a good overview of the properties that can be obtained with this alloying approach. Besides, the evaluation of microstructure and mechanical properties as a function of temperature allow understanding the real benefits of increasing the sintering temperature, in order to find an appropriate balance between the economic requirements and the material performance.


Alloy Digest ◽  
2004 ◽  
Vol 53 (5) ◽  

Abstract Algoma 130 is a cost-effective choice for applications that require high strength, improved notch toughness, weldability, and good formability. It is one in a full range of heat treated plate products for highway trailers, mining, manufacturing, and military applications. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-143. Producer or source: Algoma Steel Inc.


2010 ◽  
Vol 436 ◽  
pp. 113-121 ◽  
Author(s):  
Orest M. Ivasishin ◽  
Dmytro G. Savvakin

High strength near-beta titanium alloys are being increasingly used in industry due to their excellent combination of properties. Blended elemental powder metallurgy (BEPM) allows to produce the above alloys and parts from them in a cost-effective manner. However, the alloy synthesis is complicated by a big amount (up to 18 wt.%) of alloying elements which diffusional redistribution between alloying particles and titanium matrix has a strong impact on microstructure evolution. In this paper synthesis of the high-strength alloys from the powder blends based on hydrogenated titanium was studied. It was found that hydrogen strongly affects diffusion controlled processes upon synthesis, such as chemical homogenization, densification and grain growth through its influence on phase composition and defect structure of the blends. Optimization of the processing parameters allowed to produce uniform, nearly-dense alloys with reduced grain size, which mechanical properties met the requirements of corresponding specifications.


2014 ◽  
Vol 1019 ◽  
pp. 19-25 ◽  
Author(s):  
F.H. Froes ◽  
B. Dutta

High cost is the major reason that there is not more wide-spread use of titanium alloys. Powder Metallurgy (P/M) represents one cost effective approach to fabrication of titanium components and Additive Manufacturing (AM) is an emerging attractive PM Technique . In this paper AM is discussed with the emphasis on the “work horse” titanium alloy Ti-6Al-4V. The various approaches to AM are presented and discussed, followed by some examples of components produced by AM. The microstructures and mechanical properties of Ti-6Al-4V produced by AM are listed and shown to compare very well with cast and wrought product. Finally, the economic advantages to be gained using the AM technique compared to conventionally processed material are presented. Key words: Additive Manufacturing (AM), 3D Printing, CAD, CAM, Laser, Electron beam, near net shape, remanufacturing, Powder Bed Fusion (PBF), Direct Energy Deposition (DED)


Alloy Digest ◽  
2004 ◽  
Vol 53 (4) ◽  

Abstract Algoma 100 is a cost-effective choice for applications that require high strength, improved notch toughness, weldability, and good formability. It is one in a full range of heat treated plate products for construction, mining, manufacturing, and military applications. This datasheet provides information on composition, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance and surface qualities as well as forming, machining, and joining. Filing Code: CS-142. Producer or source: Algoma Steel Inc.


Sign in / Sign up

Export Citation Format

Share Document