Microstructures and Mechanical Properties of Mg-9Zn-Zr Magnesium Alloys

2010 ◽  
Vol 654-656 ◽  
pp. 643-646 ◽  
Author(s):  
Jing Zhang ◽  
Qi Ma ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo

The effects of rare earth addtition of Er on the microstructures and mechanical properties of Mg-9Zn-Zr magnesium alloys were examined. The results showed that the addition of Er resulted in the formation of two types of thermally stable Er-bearing compounds with distinct Zn/Er ratio. The volume fraction of the second-phase particles increased with the increase of Er addition. 2% Er could refine the as-cast microstructure effectively. The yield strength generally increased and the elongation decreased gradually. 0.5% Er-bearing alloy had optimum combined mechanical properties, with the yield strength, tensile strength and elongation being 313MPa, 366MPa and 22%, respectively. Furthermore, addition of Er brought about homogenous deformation behaviour and recrystallization behaviour to the alloy.

2009 ◽  
Vol 610-613 ◽  
pp. 746-749 ◽  
Author(s):  
Jia Shen ◽  
Ming Bo Yang ◽  
Fu Sheng Pan ◽  
Ren Ju Cheng

The as-cast microstructures and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys were investigated and compared. The results indicate that the as-cast microstructure of Mg-3Ce-1.2Mn-0.9Sc alloy was mainly composed of -Mg, Mg12Ce and Mn2Sc phases, and that the as-cast microstructure of Mg-3Ce-1.2Mn-1Zn alloy was mainly composed of -Mg, Mg12Ce and MgZn phases. In addition, the as-cast tensile and creep properties of Mg-3Ce-1.2Mn-0.9Sc alloy were higher than that of the Mg-3Ce-1.2Mn-1Zn alloy. The difference of the two alloys in as-cast tensile and creep properties may be related to the initial microstructures of the two alloys.


2013 ◽  
Vol 401-403 ◽  
pp. 610-613
Author(s):  
Jian Ming Wang ◽  
Yang Liu ◽  
Yan Liu ◽  
Qian He Ma

The pipeline steel as an application in pipeline construction must have good comprehensive mechanical properties due to the harsh environment of the pipeline engineering. So this experiment takes the X80 pipeline steel as the research object, the thermal stability second phase particles which would not be dissolved or aggregated at high temperature will be expected by means of adding nanomagnesium oxide into the steel with the method of carrier dispersion addition. The effect of nanometer magnesium oxide addition on the cast microstructure of X80 pipeline steel was analysed. The results show that the cast microstructure is consist of the ferrite and a small amount bainite. And the bainite is distributed at the boundary of the ferrite grains. When adding 0.02 wt% nanometer magnesium oxides, the number of bainite increases significantly in the cast microstructure, which is mostly distributed at the boundary of the ferrite grains.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 391 ◽  
Author(s):  
Jan Bohlen ◽  
Sebastian Meyer ◽  
Björn Wiese ◽  
Bérengère J. C. Luthringer-Feyerabend ◽  
Regine Willumeit-Römer ◽  
...  

Magnesium alloys attract attention as degradable implant materials due to their adjustable corrosion properties and biocompatibility. In the last few decades, especially wrought magnesium alloys with enhanced mechanical properties have been developed, with the main aim of increasing ductility and formability. Alloying and processing studies allowed demonstrating the relationship between the processing and the microstructure development for many new magnesium alloys. Based on this experience, magnesium alloy compositions need adjustment to elements improving mechanical properties while being suitable for biomaterial applications. In this work, magnesium alloys from two Mg-Zn series with Ce (ZE) or Ca (ZX) as additional elements and a series of alloys with Ag and Ca (QX) as alloying elements are suggested. The microstructure development was studied after the extrusion of round bars with varied processing parameters and was related to the mechanical properties and the degradation behavior of the alloys. Grain refinement and texture weakening mechanisms could be improved based on the alloy composition for enhancing the mechanical properties. Degradation rates largely depended on the nature of second phase particles rather than on the grain size, but remained suitable for biological applications. Furthermore, all alloy compositions exhibited promising cytocompatibility.


2009 ◽  
Vol 610-613 ◽  
pp. 826-830
Author(s):  
Tian Mo Liu ◽  
Wei Hui Hu ◽  
Qing Liu

The microstructures and mechanical properties of cold upsetting magnesium alloys were investigated upon anneal under different conditions. The results show that a large amount of twins were observed in the original grains of cold upsetting AZ31 magnesium alloys. The twins disappeared gradually and recrystal grains formed after anneal. The volume fraction of the recrystal grains increases as the strain of samples rises. Recrystal grain size grows large with the elevated annealing temperature. Recrystal grain size reduces at first and then grows as the annealing time is prolonged. In addition, compared with as-cast magnesium alloys, the yield strength of cold upsetting samples increase apparently due to grain refinement after anneals.


1990 ◽  
Vol 213 ◽  
Author(s):  
David G. Morris ◽  
Reto Lerf

ABSTRACTTitanium trialuminide alloys suffer problems of intense segregation during solidification and extreme brittleness when subjected to tensile stresses. In this study, spray forming techniques have been used to obtain homogeneous materials of fine microstructure, containing various second phase particles, and the deformation behaviour of these materials examined over a range of temperatures.The microstructure and deformation behaviour of an iron-modified titanium trialuminide with the L12 structure is reported here.Deformation mechanisms are interpreted by analysis of dislocation structures and further confirmation is obtained by activation volume measurements: the importance of Peierls effects at low temperatures and cross slip at high temperatures is shown. The material remains brittle in tension both at room temperature and at high temperatures: the second phase particles in the material are yet not present in sufficient volume fraction to greatly affect plastic behaviour.


2013 ◽  
Vol 747-748 ◽  
pp. 470-477
Author(s):  
Rui Dong Liu ◽  
Xu Guang Dong ◽  
Fu Jun Wei ◽  
Yuan Sheng Yang

The effects of minor Al and Ce on the microstructures, room-temperature and high-temperature mechanical properties of as-cast Mg-6Zn magnesium alloys were investigated. With the Al addition into Mg-6Zn alloy, the coarse eutectic Mg51Zn20phases were refined and distributed discontinuously. After adding 0.5wt.% Ce into Mg-6Zn-1Al alloy, a new needle-like Al2CeZn2phase was observed. Meanwhile, the volume fraction of Mg51Zn20phase decreased and the semi-continuous Mg51Zn20phase became discontinuous globular morphology. It has been observed that the addition of Ce element coarsens the grains, and 1wt.% Al addition enhanced the yield strength and ultimate strength from 86.35MPa, 229MPa to 90.7MPa, 238MPa, respectively. Moreover, the Ce addition can significantly increase the high-temperature mechanical properties of cast Mg-6Zn-1Al alloy.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2014 ◽  
Vol 58 ◽  
pp. 535-542 ◽  
Author(s):  
P. Shaterani ◽  
A. Zarei-Hanzaki ◽  
S.M. Fatemi-Varzaneh ◽  
S.B. Hassas-Irani

1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


2022 ◽  
Vol 327 ◽  
pp. 3-10
Author(s):  
Shu Sen Wu ◽  
Xiao Gang Fang ◽  
Shu Lin Lü ◽  
Long Fei Liu ◽  
Wei Guo

There is little datum related to microstructure and properties of Mg alloys squeeze-casted with pressure over 200 MPa. In this study, the microstructure and properties of Mg-6Zn-1.4Y (ZW61) alloy solidified under 100MPa to 800MPa were investigated. The results show that a remarkable microstructure refinement and porosity reduction can be reached through solidification under high pressure. The average grain size and the volume fraction of second phase, i.e. quasicrystal I-phase, decrease continuously with the increase of applied pressure. The tensile properties, especially elongation, are obvious enhanced because of the microstructure refinement and castings densification under high pressure. The ultimate tensile strength and elongation of ZW61 alloy in as-cast state are 243 MPa and 18.7% when the applied pressure is 800 MPa, which are increased by 35% and 118% respectively, compared with that of the gravity castings.


Sign in / Sign up

Export Citation Format

Share Document