Preparation of PVC/Kaolin Nanocomposites through Solid State Shear Compounding Based on Pan-Milling

2011 ◽  
Vol 694 ◽  
pp. 350-354 ◽  
Author(s):  
Kan She Li ◽  
Ying Hong Chen ◽  
Hong Mei Niu ◽  
Jian Jun Chen

Solid state shear compounding technology (S3C) based on pan-milling is an effective method to prepare polymer/layered mineral composites with nano intercalating structure. The PVC/Kaolin compounding powders were successfully prepared by pan-milling at ambient temperature, and then the PVC/Kaolin nanocomposites were processed by moulding The structure and properties of PVC/Kaolin compounding powder and nanocomposites were investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and mechanical tests. The results showed that the mechanical properties of PVC/Kaolin nanocomposites prepared through S3C based on pan-milling 30 cycles at ambient temperature including elongation, tensile strength and notched impact strength were remarkably improved compared with conventional filled composites. The elongation of PVC / Kaolin nanocomposites with 4 %wt. Kaolin was 274.6%, which is 187.3 % higher than that for a conventional filled composite. The tensile strength was 54.0 MPa, which is 6.3 MPa higher than that for a conventional filled composite. The tensile strength of the nanocomposites with 8 %wt. Kaolin was 57.5 MPa, which is 9.1 MPa higher than that for a conventional filled composite. At the same time, the notched impact strength was 4.9 kJ/m2, which is 1.0 kJ/m2 higher than a conventional filled composite. Strengthening and toughening for PVC were synchronously realized. XRD, SEM and TEM verified that S3C based on pan-milling realized synchronously pulverizing, dispersion and compounding of PVC with kaolin Through 25-30 cycles pan-milling, PVC and Kaolin powders imbedded each other and made into uniform PVC/Kaolin compounding powders and nanocomposites. The strip flake of Kaolin particles with thickness less than 50 nanometer and the aspect ratio of 10 times dispersed homogeneously in the PVC matrix.

2005 ◽  
Vol 04 (05n06) ◽  
pp. 1025-1028
Author(s):  
I. MANNA ◽  
P. NANDI ◽  
B. BANDYOPADHYAY ◽  
P. M. G. NAMBISSAN ◽  
K. GHOSHRAY ◽  
...  

The microstructural evolution at different stages of milling of a ternary powder blend of Al 50 Ti 40 Si 10 composition was monitored by X-ray diffraction, high-resolution transmission electron microscopy, positron annihilation spectroscopy and 27 Al nuclear magnetic resonance. Ball-milling leads to alloying, nanocrystallization and partial solid state amorphization, either followed or accompanied by strain-induced nucleation of nanocrystalline intermetallic phases from an amorphous solid solution.


2020 ◽  
pp. 089270572091278 ◽  
Author(s):  
Reem Al-Wafi ◽  
SF Mansour ◽  
MK Ahmed

Electrospun nanofibrous scaffolds containing co-dopant of Sr/Se into carbonated hydroxyapatite has been synthesized in situ with graphene (G) nanosheets and carried on polycaprolactone at different contributions of G. The powder and the nanofibrous samples were investigated using X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy (FESEM). The FESEM micrographs show that the highest content of G (0.2 G) was formed in non-oriented/rough/cracked fibers with diameters around 0.3–0.4 µm at the maximum. The tensile strength of nanofibrous scaffolds was improved with the addition of G nanosheets and the maximum tensile strength of 0.2 G was around 6.39 ± 0.24 MPa, while the minimum cell viability ratio was about 94.4 ± 3.2% for the free G nanofibers. The in vitro attachment of HFB4 cell lines was investigated and it showed that nanofibrous scaffolds have induced cells to be proliferated and spread on the nanofibrous scaffolds’ surface. This behavior of cells growth encourages more investigations for these nanofibrous scaffolds to be promoted for clinical applications.


1990 ◽  
Vol 5 (4) ◽  
pp. 746-753 ◽  
Author(s):  
R. W. Johnson ◽  
C. M. Garland

We describe a low-temperature solid-state interdiffusion technique that allows reaction between spatially separated reacting species and its application in the Al–Ru alloy system. This technique uses a liquid-metal solvent (Bi) as a medium for the transfer of Al to the surface of Ru powder where reaction occurs with the formation of nanocrystalline AlxRu1−x product phases. X-ray diffraction measurements are used to follow the time and temperature dependence of the reaction. Cross-sectional transmission electron microscopy allows direct imaging of the growth and morphology of the AlxRu1−x product phases.


2020 ◽  
Vol 9 (4) ◽  
pp. 1615-1626

In this study, a new bismuth tin eutectic alloy and other samples of the same composition doped with variable concentration of silver vanadate nanorods were prepared using new route powder metallurgy. X-ray diffraction of prepared silver vanadate approves the formation of  phase silver vanadate (-AgVO3). Transmission electron microscopy shows the formation of AgVO3 nanorods of radius ranging (20-40 nm). X-ray diffraction of alloys doped with silver vanadate and mechanical tests show that hardness and creep behavior data are composition-dependent parameters with silver vanadate content. Antimicrobial tests against pathogenic grams, fungi, and yeast showed that the addition of silver vanadate nanorods stimulates the action of hydride alloy and increases their activity against bacterial strains. In hospitals, biomedical devices may contaminate infection; doping devices with nanoparticles may make it auto clean besides conserving its mechanical properties.


2005 ◽  
Vol 297-300 ◽  
pp. 154-159 ◽  
Author(s):  
Xin Hong Wang ◽  
Zeng Da Zou ◽  
Min Zhang ◽  
Si Li Song ◽  
Shi Yao Qu

WC-TiC-Co cermet and CuZnNi alloy composite coatings were produced on mild steel by a high temperature inside-furnace brazing technique. The microstructure, phase constituents and interfacial diffusion behavior of cermet and Cu-based alloy were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and X-ray diffraction. The tensile strength and wear property of composite coatings were also investigated. The results show that crème particles were not decomposed severely during the inside- furnace brazing process. The microstructure of the matrix is α and β phases. Diffusion occurred at the cermet/Cu-based alloy interface. The tensile strength of the composite coatings reached 240-300MPa, which depended on the brazing temperature and was far higher than that of the flame hardfacing layers. Cermet fracture was basically a brittle fracture in nature and matrix involves ductile fracture.


Author(s):  
Hirokazu Kimura ◽  
Hiroshi Sakabe ◽  
Hitoshi Morita ◽  
Takashi Itoh ◽  
Takashi Konishi

It is well known that several ω-amino acids are polymerized in the solid state. A single crystal of ε-aminocaproic acid has been reported to be polymerized in the solid state to be the biaxially oriented nylon 6. We also reported in the previous paper that the thermal solid state polymerization of glycine single crystal produced poly(glycine-I) crystal.In this paper,structure of poly(β-alanine) polymerized in the solid state is investigated by means of scanning electron microscopy (SEM).transmission electron microscopy (TEM) and X-ray diffraction.Commercial β-alanine (Nakarai Tesque,Inc.,Kyoto) was recrystallized three times from the distilled-water solution (lg/ml) at 80°C. The single crystal continued to grow gradually during 24 hr. The obtained single crystals with rhombic habit had clear cleavage planes. These single crystals about 10 mm in size were used as the original specimens. The polymerization procedure was carried out on the single crystals at temperatures between 140 and 170°C in an evacuated and subsequently sealed tube.


2005 ◽  
Vol 13 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Minyan Guo ◽  
Xiaodong Zhou ◽  
Gance Dai ◽  
Fuzeng Hu

Melt compounding was employed to prepare polypropylene (PP)/ethylene-octene copolymer (POE)/organic-montmorillonite (OMMT) nanocomposites. Polypropylene grafted with maleic anhydride (MPP) was added as a compatibilising agent. Analyses by wide-angle X-ray diffraction, transmission electron microscopy and scanning electron microscopy indicated that polymer chains intercalated into OMMT and that some of the OMMT delaminated into nano-layers dispersed in the PP matrix. Mechanical tests showed that the addition of POE increases the toughness of PP, but it decreases the stiffness. When OMMT and MPP were added, the toughness of PP increased greatly and the stiffness was not changed profoundly. Differential scanning calorimetry was used to study the melt and crystallization behavior of the composites. The results indicate that OMMT and MPP act as effective nucleating agents.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document