Mechanical Properties of Iron Hollow Sphere Reinforced Metal Matrix Syntactic Foams

2015 ◽  
Vol 812 ◽  
pp. 3-8 ◽  
Author(s):  
Attila Bálint ◽  
Attila Szlancsik

Metal matrix syntactic foams (MMSFs) were produced by low-pressure inert gas infiltration technique. Matrixes of the produced syntactic foams were Al99.5, AlSi12, AlMgSi1 and AlCu5 respectively, and each was reinforced by pure Fe based hollow. The produced blocks were investigated by optical and scanning electron microscopy. The microstructural investigations revealed proper infiltration with small amount of unwanted voids and an effective and thin interface layer between the matrix materials and the reinforcing spheres. The produced MMSFs were also tested under quasi-static compression loading to get characteristic mechanical properties. The test results showed that the MMSFs with iron spheres have outstanding mechanical properties compared to ‘conventional’ foams.

2011 ◽  
Vol 321 ◽  
pp. 7-10 ◽  
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Yan Qin ◽  
Min Xian Shi ◽  
Qi Lin Mei ◽  
...  

In this work, syntactic foams made of microballoons having same wall thickness ratio but with different particle size was prepared. Microballoons of three size distribution ranges were selected .The property of the syntactic foams were studied by quasi-static compression test. The experimental results show the microballoons size doesn’t influent the mechanical properties of the syntactic foam significantly. The failure mode of the syntactic foams was also studied in this work.


2021 ◽  
pp. 136943322110073
Author(s):  
Erdem Selver ◽  
Gaye Kaya ◽  
Hussein Dalfi

This study aims to enhance the compressive properties of sandwich composites containing extruded polystyrene (XPS) foam core and glass or carbon face materials by using carbon/vinyl ester and glass/vinyl ester composite Z-pins. The composite pins were inserted into foam cores at two different densities (15 and 30 mm). Compression test results showed that compressive strength, modulus and loads of the sandwich composites significantly increased after using composite Z-pins. Sandwich composites with 15 mm pin densities exhibited higher compressive properties than that of 30 mm pin densities. The pin type played a critical role whilst carbon pin reinforced sandwich composites had higher compressive properties compared to glass pin reinforced sandwich composites. Finite element analysis (FE) using Abaqus software has been established in this study to verify the experimental results. Experimental and numerical results based on the capabilities of the sandwich composites to capture the mechanical behaviour and the damage failure modes were conducted and showed a good agreement between them.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1741 ◽  
Author(s):  
Jiaxiang Wu ◽  
Huaixi Wang ◽  
Xiang Fang ◽  
Yuchun Li ◽  
Yiming Mao ◽  
...  

Al-PTFE (aluminum-polytetrafluoroethene) is regarded as one of the most promising reactive materials (RMs). In this work, Ni (Nickel) was added to Al-PTFE composites for the purpose of improving the energy density and damage effect. To investigate the thermal behavior, mechanical properties and reaction characteristics of the Al-Ni-PTFE composites, an Al-PTFE mixture and an Al-Ni mixture were prepared by ultrasonic mixing. Six types of Al-Ni-PTFE specimens with different component mass ratios were prepared by molding sintering. Simultaneous thermal analysis experiments were carried out to characterize the thermal behavior of the Al-PTFE mixture and the Al-Ni mixture. Quasi-static compression tests were performed to analyze the mechanical properties and reaction characteristics of the Al-Ni-PTFE specimens. The results indicate that the reaction onset temperature of Al-Ni (582.7 °C) was similar to that of Al-PTFE (587.6 °C) and that the reaction heat of Al-Ni (991.9 J/g) was 12.5 times higher than that of Al-PTFE (79.6 J/g). With the increase of Ni content, the material changed from ductile to brittle and the strain hardening modulus and compressive strength rose first and then subsequently decreased, reaching a maximum of 51.35 MPa and 111.41 MPa respectively when the volume fraction of Ni was 10%. An exothermic reaction occurred for the specimens with a Ni volume fraction no more than 10% under quasi-static compression, accompanied by the formation of Ni-Al intermetallic compounds. In the Al-Ni-PTFE system, the reaction between Al and PTFE preceded the reaction between Al and Ni and the feasibility of increasing the energy density and damage effect of the Al-Ni-PTFE reactive material by means of Ni-Al reaction was proved.


2021 ◽  
Author(s):  
Saman Sayahlatifi ◽  
Chenwei Shao ◽  
André McDonald ◽  
James David Hogan

Abstract This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).


2018 ◽  
Vol 204 ◽  
pp. 05020
Author(s):  
Aminnudin Aminnudin ◽  
Moch. Agus Choiron

Metal matrix composite (MMC) is a combination of two or more materials using metal as a matrix. In this paper we used brass as the matrix and fly ash as for the particle. The fly ash used is fly ash which is produced from coal combustion in the Paiton power plant. Fly ash composition in the MMC are 5% and 10%. The MMC was produced with gas furnace. Heat tratment to MMC was done at 350 and 400 °C.Hard testing process, tensile test and impack test are carried out at MMC before heat treatment and after heat treatment. From the test results showed an increase in hardness, tensile strength and impact test showed the heat treatment process at a temperature of 350 °C. Heat treatment at a temperature of 400 °C does not improve the mechanical properties of MMC


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 421 ◽  
Author(s):  
Jun Zhang ◽  
Xiang Fang ◽  
Yuchun Li ◽  
Zhongshen Yu ◽  
Junyi Huang ◽  
...  

To analyze the mechanical properties and reaction characteristics of Al-ZrH2-PTFE (aluminum-zirconium hydride-polytetrafluoroethylene) composites under quasi-static compression, five types of specimens with different ZrH2 contents (0%, 5%, 10%, 20% and 30%) were prepared by molding-vacuum sintering. The true stress-strain curves and reaction rates of the different specimens were measured using quasi-static compression. The specific reaction processes were recorded by a high-speed camera. The corresponding reaction products were characterized by the XRD phase analysis, the calorific value was tested by a Calorimeter, and the reaction mechanism was analyzed. According to the results, the strength of the composites increased first and then decreased with the increase in the content of ZrH2. It reached a maximum of 101.01 MPa at 5%. Violent reaction occurred, and special flames were observed during the reaction of the specimens with 5% ZrH2. With the increase in the content of ZrH2, the chemical reaction was hard to induce due to the reduction in strength and toughness of composites. The reaction mechanism of Al/ZrH2/PTFE reveals that high temperatures at crack tip induced the reaction of Al and PTFE. Subsequently, ZrH2 decomposed to release hydrogen and generate ZrC. Calorimetric experiment shows that the calorific value of Al/ZrH2/PTFE with 20% ZrH2 is higher than that of Al/PTFE. The findings verify the potential of ZrH2 as an energetic additive for the enhancement of strength and release of the energy of the composites.


2012 ◽  
Vol 21 (5) ◽  
pp. 096369351202100 ◽  
Author(s):  
Bedri Onur Kucukyildirim ◽  
Aysegul Akdogan Eker

Industrial type multi-walled carbon nanotube (MWCNT) reinforced aluminum (Al) matrix composites are successfully fabricated by vacuum assisted infiltration of Al into the CNTs-Al preform and compressive mechanical properties of these composites are investigated. The compressive properties and hardness of CNT reinforced composites are fairly increased compared with the previous CNT/Al composite studies. Furthermore, our study confirms that the mechanical enhancements of the composites are interrelated with bridging and pulling-out of CNTs in the fracture surfaces. Moreover, the presence of CNTs leads to dispersion strengthening of the matrix because of their nano size.


2004 ◽  
Vol 449-452 ◽  
pp. 301-304
Author(s):  
Woo Gwang Jung ◽  
Hoon Kwon

BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg3N2and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg2N2, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg)MMC was derived from the phase analysis results and the thermodynamic investigation.


Sign in / Sign up

Export Citation Format

Share Document