Synthesis of Catechin-Gelatin Nanofiber by Electrospinning

2017 ◽  
Vol 887 ◽  
pp. 96-99 ◽  
Author(s):  
Muhamad Nasir ◽  
Dita Apriani

Catechin and gelatin are important natural products for food, medical, pharmaceutical and cosmetic industry. We have successfully synthesized catechin-gelatin nanofiber by electrospinning process. Catechin-gelatin nanofiber was synthesized by using gelatin from yellow fin skin tuna fish as biopolymer, polyethylene oxide (PEO) as spinnability improver polymer, acetic acid as solvent and catechin as bioactive component, respectively. Morphology and structure of bioactive catechin-gelatin nanofiber were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. SEM analysis showed that morphology of nanofiber was very smooth without bead on nanofiber string. The average of catechin-gelatin nanofiber diameter was 389 nm. FTIR analysis results were used to confirm structure of catechin-gelatin nanofiber. Catechin-gelatin nanofiber has vibration band peak of amide A (N-H) at 3289,043 cm-1 and amide B (N-H) 3062,310 cm-1, amide I (C=O) at 1643,812 cm-1, amide II (N-H and CN) at 1538,949 cm-1, amide III (C-N) at 1237,11 cm-1 from gelatin, C-O-C from PEO at 1143,583 cm-1, and vibration band peak OH at 3200-3600 cm-1, and at C-O ether around 1300-1100 from catechin, respectively. FTIR spectra showed us that there is no change in chemical structure of gelatin and catechin in nanofiber which was produced by electrospinning process. Catechin-gelatin nanofiber can inhibit S. Aureus bacteria around 43.38%

2021 ◽  
pp. 268-268
Author(s):  
Menaka Thayumanavan ◽  
Andy Srinivasan ◽  
Senthil Arumugam

Nanofiltration is an important application for electro-spun fiber as it is well characterized by fine fiber diameter, huge density, high penetrability and flexibility. In this paper, the Poly-acrylonitrile (PAN) fiber diameter is determined experimentally by varying four factors such as voltage, flow rate, the distance between spinneret and collector, and mass fraction in the electrospinning process. The fiber diameter is measured through SEM analysis. A highly accurate kernel-based nonlinear multivariable grey model, KGM (1, 1) model is used for the prediction of nanofiber diameter for filtering particulate less than 500 nm. This is proved to be better when compared to the Grey Model First Order One Variable and Multivariable grey model. Based on simulated outcomes, filtration membranes are prepared and tested for filtration efficiency for the airborne particles relating its air permeability, porosity and quality factor.


2017 ◽  
Vol 68 (5) ◽  
pp. 1077-1080
Author(s):  
Krisztina Martha ◽  
Alexandru Ogodescu ◽  
Cristina Ioana Bica ◽  
Cristina Molnar Varlam

Almost all orthodontic wires suffer from corrosion as they are intra-orally engaged. This chemical structure alteration appears on the surface of these wires, surface topography can be easily visualised with scanning electron microscope method. The aim of our study was to assess the intraoral corrosion of the retrieved orthodontic Ni-Ti archwires. Archwire retrieval procedure yielded approximately 30 retrieved wires, placed intra-orally for 1-5 months. SEM analysis was performed and surface changes were interpreted. Our SEM results showed, that surface corrosion and pitting can be seen on the surface of retrieved Ni-Ti wires, the depth of corrosion depends on the time wires have been engaged in the oral cavity. With regards of metal liberation consequently surface corrosion, practitioners should be avare of these chemical changes which can affect the resistence of the orthodontic appliance and patient health.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1801
Author(s):  
Rafał Oliwa ◽  
Joanna Ryszkowska ◽  
Mariusz Oleksy ◽  
Monika Auguścik-Królikowska ◽  
Małgorzata Gzik ◽  
...  

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 247
Author(s):  
Aleksandra Maletin ◽  
Ivan Ristic ◽  
Tanja Veljovic ◽  
Bojana Ramic ◽  
Tatjana Puskar ◽  
...  

The degree of polymerization for dimethacrylate resin-based materials (BisGMA, TEGDMA, UDMA, HEMA) ranges from 55 to 75%. Literature data indicate that polymerization efficacy depends, among other factors, on the type of methacrylate resin comprising the material. The aim of this study was to evaluate the polymerization efficacy of four dental cement materials characterized by different polymerization mechanisms using FTIR analysis. In the present study, the FTIR method was adopted to analyze the degree of polymerization efficacy of four resin-based dental cement materials, two of which were self-cured and two were dual-cured cements. The IR spectral analysis was performed 24 h after the polymerization of the cementitious material. RelyX ARC cement exhibits the lowest polymerization efficacy (61.3%), while that of Variolink II (85.8%) and Maxcem Elite is the highest (90.1%). Although the efficacy of self-cured cements appears to be superior, the difference is not statistically significant (p = 0.280). Polymerization efficacy largely depends on the chemical structure of the material in terms of the presence of a particular methacrylate resin and less on the polymerization mechanism itself, i.e., whether it is a self-cured or dually cured dental cement. Thus, in clinical practice, cementitious materials with a higher proportion of TEGDMA compared with BisGMA are recommended.


2020 ◽  
Vol 16 (1) ◽  
pp. 47-56
Author(s):  
I. Sriyanti ◽  
L. Marlina ◽  
J. Jauhari

The Cromaloena odorata (COE) contains phenols, flavonoids, tannins, alkaloids, saponins, steroids that possess diverse therapeutic effects. However, COE has poor solubility in water and poor absorbtion in the body. Incorporation of COE in nanofiber system is a promising way to increase CEO solubility. One of the method to produce nanofiber is electrospinning. The electrospinning process there are three of the most important process parameters are applied flowrate, voltage and TCD. In this study we developed optimized condition for electrospinning process of polyvinyl alcohol (PVA)/CEO and their characterization. The Scanning electron microscopy (SEM) analysis showed that modification of flowrate and TCD did not affect the morphology of PVA and COE fiber. However fiber diameter decreased when lower flowrate, higher voltage was applied, and TCD. Fourier Transform Infrared (FTIR) study was conducted to identify possible intermolecular interaction between PVA/COE that has potential application as antimicrobial wound dressing.


2013 ◽  
Vol 448-453 ◽  
pp. 3041-3045
Author(s):  
Fei Bi ◽  
Xiang Ting Dong ◽  
Jin Xian Wang ◽  
Gui Xia Liu ◽  
Wen Sheng Yu

PVP/[Y(NO3)3+Al (NO3)3] composite nanobelts were fabricated via electrospinning combined with sol-gel process and novel structure of Y3Al5O12(denoted as YAG for short) nanobelts have been obtained after calcination of the relevant composite nanobelts. The structural properties were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis indicated that the composite nanobelts were amorphous, and YAG nanobelts were cubic in structure with space group Ia3d. FTIR analysis manifested that pure YAG nanobelts were formed at 900oC. SEM analysis and histograms revealed that the width of the composite nanobelts and YAG nanobelts were 3.5 μm and 2.4 μm, and the thickness were 240 nm and 112 nm, respectively, under the 95% confidence level. The formation mechanism of YAG nanobelts was discussed in detail.


2016 ◽  
Vol 28 (11) ◽  
pp. 3131-3143 ◽  
Author(s):  
Najmeh Ketabchi ◽  
Majid Naghibzadeh ◽  
Mahdi Adabi ◽  
Seyedeh Sara Esnaashari ◽  
Reza Faridi-Majidi

Author(s):  
Jian-Qiang Hu ◽  
Ke-Yi Gao ◽  
Da-Wei Liu

Differential scanning calorimetry (DSC) and thin film micro oxidation test (TMOT) were employed to evaluate the antioxidation properties of tin dialkyldithiocarbamate (SnDDC) with p,p′dioctyldiphenylamine (DODPA) antioxidant in pentaerythritol ester (PE) or polyalphaolefin synthetic lubricant (PAO), and their chemical structure were identified by fourier transform infrared spectroscopy (FTIR) analysis. DSC test shows that incipient oxidation temperature and oxidation induction time of DODPA-containing PE were improved significantly by SnDDC addition, SnDDC shows a good oxidative synergism with DODPA antioxidant. TMOT results indicates that the combination of SnDDC and DODPA in polyalphaolefin can also effectively reduce the weight lost, carbonyl peak square index and diposits of oxidized oils, which confirm that the combination of SnDDC and DODPA exhibit good synergistic antioxidation properties and deposits inhibition.


Sign in / Sign up

Export Citation Format

Share Document