Influence of Functionality of Polyhedral Oligomeric Silsesquioxane (POSS) Dispersed in Epoxy Resin for Application in Hybrid Coating

2017 ◽  
Vol 899 ◽  
pp. 278-282 ◽  
Author(s):  
Marielen Longhi ◽  
Vinicius Pistor ◽  
Lucas Pandolphi Zini ◽  
Sandra Raquel Kunst ◽  
Ademir José Zattera

The present study aimed to characterize the structure of nanocomposites obtained from the incorporation of three different polyhedral oligomeric silsesquioxane (POSS) in an epoxy resin. glycidylisobutyl-POSS, triglycidylisobutyl-POSS and glycidyl-POSS were added (5% by weight) in an epoxy matrix, diglycidyl ether of bisphenol-A (DGEBA), through a sonication process. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). The XRD analysis presented a characteristic peak of POSS. The incorporation of glycidylisobutyl-POSS showed a significant increase in the value of glass transition temperature (Tg), being also the most effective in terms of dispersion. It should also be noted that glycidyl-POSS presented a greater influence on the thermal stability.

2017 ◽  
Vol 25 (8) ◽  
pp. 593-602 ◽  
Author(s):  
Marielen Longhi ◽  
Lucas Pandolphi Zini ◽  
Sandra Raquel Kunst ◽  
Ademir José Zattera

Epoxy resin is one of the most used resins for obtaining composites and coatings. Its properties have been modified using many materials, mainly based on nanotechnology, such as clays and polyhedral oligomeric silsesquioxanes (POSS). POSS may increase thermal and mechanical resistance and hydrophobicity of the epoxy resin. This study aims at characterizing epoxy nanocomposites, using two distinct resins (DGEBA and DGEBF) and an addition of glycidylisobutyl-POSS in contents of 2.5% and 5% (w/w), through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Samples showed an amorphous halo due to the epoxy resin and a characteristic peak of POSS. TGA results showed a greater residual mass in DGEBF systems due to its wider formation of crosslinks. FTIR spectra demonstrated a higher amplitude of the hydroxyl band in DGEBF 5% system, which may affect its hydrophilic behavior because of the molecular mobility and resin weight reduction. DMA results showed that DGEBA systems are more flexible than DGEBF.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Dalia M. T. Mustafa ◽  
Sarkawt Rostam ◽  
Shujahadeen B. Aziz

In the present work, epoxy resin-based nanocomposites (NCPs) were fabricated with improved mechanical properties. The epoxy resin (EPR) was mixed with differing amounts of calcium titanate (CaTiO3) nanoparticles (NPs) and glass fiber. The results showed that the ternary system contained glass fiber exhibits low mechanical performance compared to binary [EPR:CaTiO3] system. The effect of fiber glass and NPs on the epoxy resin mechanical behavior was determined by conducting a tensile test for various specimen sets. From the mechanical characterizations, it was seen that there is a monotonic relationship between the NPs concentration and Young’s modulus. Additionally, NCPs samples were brittle in nature and the strain rate significantly decreased upon the addition of CaTiO3 concentration; while the tensile strength was increased. From the X-ray diffraction evaluation, it can be concluded that the addition of NPs have a great impact on the epoxy structure. Besides, the morphology appearance was in good agreement with structural and mechanical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Artur Soares Cavalcanti Leal ◽  
Carlos Jose de Araújo ◽  
Antônio Gilson de Barbosa Lima ◽  
Suédina Maria Lima Silva

Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA), crosslinking agent diaminodiphenylsulfone (DDS), and diethylenetriamine (DETA). The purified bentonite organoclay (APOC) was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA). According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2966
Author(s):  
Touseef Amna ◽  
Mallick Shamshi Hassan ◽  
Mohamed H. El-Newehy ◽  
Tariq Alghamdi ◽  
Meera Moydeen Abdulhameed ◽  
...  

This study was performed to appraise the biocompatibility of polyhedral oligomeric silsesquioxane (POSS)-grafted polyurethane (PU) nanocomposites as potential materials for muscle tissue renewal. POSS nanoparticles demonstrate effectual nucleation and cause noteworthy enhancement in mechanical and thermal steadiness as well as biocompatibility of resultant composites. Electrospun, well-aligned, POSS-grafted PU nanofibers were prepared. Physicochemical investigation was conducted using several experimental techniques, including scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, Fourier transform infrared spectroscopy, and X-ray diffraction pattern. Adding POSS molecules to PU did not influence the processability and morphology of the nanocomposite; however, we observed an obvious mean reduction in fiber diameter, which amplified specific areas of the POSS-grafted PU. Prospective biomedical uses of nanocomposite were also appraised for myoblast cell differentiation in vitro. Little is known about C2C12 cellular responses to PU, and there is no information regarding their interaction with POSS-grafted PU. The antimicrobial potential, anchorage, proliferation, communication, and differentiation of C2C12 on PU and POSS-grafted PU were investigated in this study. In conclusion, preliminary nanocomposites depicted superior cell adhesion due to the elevated free energy of POSS molecules and anti-inflammatory potential. These nanofibers were non-hazardous, and, as such, biomimetic scaffolds show high potential for cellular studies and muscle regeneration.


2006 ◽  
Vol 11-12 ◽  
pp. 323-326 ◽  
Author(s):  
Jun Peng Ma ◽  
Qi Fang Li

Epoxy-cyanate (EP-CE) ester composites containing the inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaisobutyl(T8)-POSS (oib-POSS) were prepared. These EP-CE/POSS composites were characterized by gelation characteristics, transmission election microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analyses (TGA) and dynamic mechanical analysis (DMTA). The glass transition temperature (Tg) and thermal decomposition temperature (Tdec) of composites increased compared with the neat epoxy-cyanate ester with the increment of POSS content. Additionally, all the EP-CE/POSS composites exhibited higher storage modulus (E’) values (temperature>Tg) than the pure resins. The loss factor peak intensities decreased as the weight percentage of POSS increases. TEM and XRD showed that phase-separated aggregates of POSS were found in matrix, because POSS did not react with the resin.


e-Polymers ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Ding Yaoke ◽  
Zhanglin Yuan ◽  
Jincheng Wang

AbstractA novel trisilanol polyhedral oligomeric silsesquioxane-containing phosphorus (DPCP-TPOSS) was synthesized from trisilanolphenyl polyhedral oligomeric silsesquioxane (TPOSS) and diphenyl chlorophosphate. DPCP-TPOSS was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), hydrogen nuclear magnetic resonance (1H-NMR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Then a novel type of room-temperature vulcanized silicone rubber (RTV)/DPCP-TPOSS composite was prepared. Properties such as swelling behavior, tensile strength, elongation at break, thermal stability and flame retardance were researched and compared. Results showed that RTV/DPCP-TPOSS-3 and RTV/DPCP-TPOSS-5 composites exhibited the best tensile strength and elongation at break, 4.5 MPa and 427%, which was 25% and 32% higher than that of pure RTV. TGA tests demonstrated that RTV/DPCP-TPOSS-3 owned the highest char residues, 39.7%. Tmax of RTV composites was increased from 531.9°C to 557°C with the incorporation of DPCP-TPOSS. Moreover, the addition of DPCP-TPOSS led to considerably increase of the fire-retardant performance.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Sign in / Sign up

Export Citation Format

Share Document