Porous Titanium Fabricated by a Combination of Vacuum Distillation and Sintering Process

2018 ◽  
Vol 933 ◽  
pp. 78-85
Author(s):  
Xiao Tong Lu ◽  
Hong Jie Luo ◽  
Wei Yin ◽  
Lin Li Wu ◽  
Qi Le He

As a new type of material combined with special structure and function, the porous titanium was prepared through vacuum distillation and sintering process, by which the titanium powder was used as raw material, magnesium particles and its powder as space holder, anhydrous ethanol as binder. The porosity of porous titanium obtained by this method is between 35% and 75% and its opening ratio runs up to 95%. The experimental result showed that magnesium existed in the compacted precursor was evaporated rapidly in vacuum when temperature reached 750°C and removed completely within 20 minutes. The suitable sintering temperature was between 1050°C and 1250°C, but the porosity of porous titanium decreased from 76.2% to 61.3% with temperature elevated. The precursor uniformity was improved by addition of anhydrous ethanol and its formability and density was also done by addition of magnesium powder. The relative density of precursor increased from 82% to 98% with magnesium powder volume fraction varied from 30 vol.% to 80 vol.%.

2014 ◽  
Vol 953-954 ◽  
pp. 1035-1039
Author(s):  
Li Qun Wang ◽  
Zhong Bo Yi ◽  
Zhong Xiang Wei

Aimed at improving the utilization of pulverized coal, high-temperature heat pipe technology was introduced into lignite carbonization.Under the design of power of 10kw semi-industrial pulverized coal carbonization test equipment, Fugu lignite coal as raw material to investigate the operating characteristics of the device and carbonization characteristics. Experimental result shows that the high temperature heat pipes heat steadily and meet the temperature requirement of low-temperature carbonization. With the extension of the holding time, the semi-coke fixed carbon content increasing, but volatile matter vice versa, however, holding time above 60 minutes, the effect of carbonization is not obvious, and the best carbonization time is 30 ~ 60 minutes. The length of the holding time has little effect on gas composition, the content of H2 and CH4 are relatively higher than the rest gas, (H2 + CH4) gas accounted for 70% of the total, the heating value remains at 18.76 ~ 19.22MJ/m3, belongs to medium-high value gas, could provide for industrial and civilian use.


2001 ◽  
Vol 280 (2) ◽  
pp. H674-H683 ◽  
Author(s):  
Gregory L. Brower ◽  
Joseph S. Janicki

We previously reported an approximately 50% incidence of rats with symptoms of congestive heart failure (CHF) at 8 wk postinfrarenal aorto-caval fistula. However, it was not clear whether compensatory ventricular remodeling could continue beyond 8 wk or whether the remaining animals would have developed CHF or died. Therefore, the intent of this study was to complete the characterization of this model of sustained volume overload by determining the morbidity and mortality and the temporal response of left ventricular (LV) remodeling and function beyond 8 wk. The findings demonstrate an upper limit to LV hypertrophy and substantial increases in LV volume and compliance, matrix metalloproteinase activity, and collagen volume fraction associated with the development of CHF. There was an 80% incidence of morbidity and mortality following 21 wk of chronic volume overload. These findings indicate that the development of CHF is triggered by marked ventricular dilatation and increased compliance occurring once the myocardial hypertrophic response is exhausted.


2019 ◽  
Vol 51 (3) ◽  
pp. 285-294
Author(s):  
Dang Wei ◽  
H.-Y. He

High strength lightweight glass-ceramics were fabricated with coal gangue and clay as main raw materials. The utilization ratio of coal gangue, the ratio of the coal gangue with clay, mineralization agents, forming process and sintering process on the properties of the fabricated glass-ceramics were optimized. The utilization ratio of coal gangue reached 75, and the ratio of coal gangue to clay was 3/1, as an optimal property was observed. The optimal sintering temperature was found to be 1370?C. At this optimal temperature, the sintered glass-ceramics showed the main phase of mullite and spindle and so showed high strength, low density, and low water absorbance. The appropriate amounts of codoping of the TiO2, ZnO, and MnO2/dolomite as mineralization agents obviously enhanced the properties of the glass-ceramics. Process optimizations further determined reasonable and optimal process parameters. The high strength lightweight glass-ceramics fabricated in this work may be very suitable for various applications including building materials, cooking ceramics, and proppant materials, et al.


2015 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Myrian Schettino ◽  
José Holanda

Large amounts of waste materials are discarded in the sugarcane industry. This work investigates the reuse of sugarcane bagasse ash waste as an alternative raw material for porcelain stoneware tile bodies, replacing natural quartz by up to 5 wt.%. The tile pieces were fired at 1230 ?C using a fast-firing cycle (< 60min). The technological properties of the fired tile pieces (e.g., linear shrinkage, water absorption, apparent density, and flexural strength) were determined. The sintering process was followed by SEM and XRD analyses. The results show that up to 2.5 wt.% sugarcane bagasse ash waste can be used as a partial replacement for quartz in porcelain stoneware tile (group BIa, ISO 13006 standard), providing excellent technical properties. Hence, its application in high-quality ceramic tile for use in civil construction as a low-cost, alternative raw material could be an ideal means of managing sugarcane bagasse ash waste.


2021 ◽  
Author(s):  
Ramratan Guru ◽  
Anupam Kumar ◽  
Rohit Kumar

This research work has mainly utilized agricultural waste material to make a good-quality composite sheet product of the profitable, pollution free, economical better for farmer and industries. In this study, from corn leaf fibre to reinforced epoxy composite product has been utilized with minimum 35 to maximum range 55% but according to earlier studies, pulp composite material was used in minimum 10 to maximum 27%. Natural fibre-based composites are under intensive study due to their light weight, eco-friendly nature and unique properties. Due to the continuous supply, easy of handling, safety and biodegradability, natural fibre is considered as better alternative in replacing many structural and non-structural components. Corn leaf fibre pulp can be new source of raw material to the industries and can be potential replacement for the expensive and non-renewable synthetic fibre. Corn leaf fibre as the filler material and epoxy as the matrix material were used by changing reinforcement weight fraction. Composites were prepared using hand lay-up techniques by maintaining constant fibre and matrix volume fraction. The sample of the composites thus fabricated was subjected to tensile, impact test for finding the effect of corn husk in different concentrations.


2013 ◽  
Vol 551 ◽  
pp. 37-43 ◽  
Author(s):  
Christian Doblin ◽  
David Freeman ◽  
Matthew Richards

The CSIRO is developing the TIRO™ process for the continuous direct production of titanium powder. The process comprises two stages. The first stage is a fluidised bed reactor (FBR) in which TiCl4 is reacted with magnesium powder to form solid magnesium chloride particles about 350 µm in diameter in which micron sized titanium particles are dispersed. The second stage is a continuous vacuum distillation operation where the titanium is separated from the magnesium chloride and sintered to form a friable “biscuit”. The biscuit comprises porous titanium spheres about 250 µm in diameter which can be liberated by very light grinding. The overall process has a throughput of 0.2 kg/h Ti, limited by the vacuum distillation unit and is being scaled up. The process has generated Ti powder with ≤0.25 wt% O and < 200 ppm Cl and meets CP2 specifications. Ring grinding the vacuum distilled product for short periods reduced the particle size, however longer grinding times caused agglomeration of the particles. Ring grinding in air resulted in a large increase in oxygen concentration


2007 ◽  
Vol 21 (27) ◽  
pp. 4689-4706
Author(s):  
Y. Z. SHAO ◽  
W. R. ZHONG ◽  
G. M. LIN ◽  
X. D. HU

We studied the theoretical Curie temperature of a dual-phase nanomagnetic system by Monte Carlo simulation of a modified Heisenberg model on a 3D complex lattice consisting of single- and cluster-spins. We also systematically investigated the experimental Curie temperature of a dual-phase nanomagnetic alloy and performed a direct comparison between theory and experiment. The exchange coupling between two component magnetic phases substantially affects the Curie temperature [Formula: see text] of the intergranular amorphous region of a dual-phase nanomagnetic system. The [Formula: see text] depends upon the nanocrystallite size d, the volume fraction Vc and the interspace among crystallites ξ. Large crystallized volume fraction Vc, small grain size d, and thin interphase thickness ξ lead to an obvious enhancement of Curie temperature (ECT) of intergranular amorphous region, whereas the Curie temperature of nanocrystallites [Formula: see text] decreases slightly. By simulation, we worked out a relationship between the reduced ECT and ξ, as [Formula: see text], and it conforms to the experimental result. In addition, we also simulated the demagnetization of a hard–soft nanocomposite system. The exchange coupling between two component phases affects the cooperativity of two-phase magnetizations, the coherent reversal of magnetizations, and coercivity.


2020 ◽  
Vol 851 ◽  
pp. 25-31
Author(s):  
Markus Diantoro ◽  
Ahmad Al Ittikhad ◽  
Thathit Suprayogi ◽  
Nasikhudin ◽  
Joko Utomo

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.


2019 ◽  
Vol 54 (10) ◽  
pp. 1259-1271 ◽  
Author(s):  
Medhat Elwan ◽  
A Fathy ◽  
A Wagih ◽  
A R S Essa ◽  
A Abu-Oqail ◽  
...  

In the present study, the aluminum (Al) 1050–FeTiO3 composite was fabricated through accumulative roll bonding process, and the resultant mechanical properties were evaluated at different deformation cycles at ambient temperature. The effect of the addition of FeTiO3 particle on the microstructural evolution and mechanical properties of the composite during accumulative roll bonding was investigated. The Al–2, 4, and 8 vol.% FeTiO3 composites were produced by accumulative roll bonding at room temperature. The results showed improvement in the dispersions of the particles with the increase in the number of the rolling cycles. In order to study the mechanical properties, tensile and hardness tests were applied. It was observed that hardness and tensile strength improve with increasing accumulative roll bonding cycles. The microhardness and tensile strength of the final composites are significantly improved as compared to those of original raw material Al 1050 and increase with increasing volume fraction of FeTiO3, reaching a maximum of ∼75 HV and ∼169 MPa for Al–8 vol.% FeTiO3 at seventh cycle, respectively.


Sign in / Sign up

Export Citation Format

Share Document