The Properties of Geopolymer-Cuo Nanoparticles as a Functional Composite

2019 ◽  
Vol 967 ◽  
pp. 281-285
Author(s):  
Annisa Nur Qadry ◽  
Noor Afifah Kharisma ◽  
Subaer

CuO nanoparticles (CuO-NPs) have been attracted much attention recently as a functional material. This study was conducted to investigate the properties of geopolymer-CuO-NPs as a functional composite. Geopolymer paste was produced through the alkali-activation method of metakaolin. CuO-NPs was synthesized from precipitation of CuSO4 in NaOH solution. The composites were developed by mixing geopolymer with CuO-NPs varying the concentration of CuO-NPs relative to metakaolin. The structure of the raw materials, as well as the resulting composites, was examined by using x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of the composites were measured by using compressive and flexural measurements. The measurements results showed that geopolymer CuO-NPs composites offer a wide range of potential structural applications.

2021 ◽  
Vol 25 (1) ◽  
pp. 931-943
Author(s):  
Girts Bumanis ◽  
Danute Vaiciukyniene

Abstract The search for alternative alumosilicates source for production of alkali activated materials (AAM) is intensively researched. Wide spread of natural materials such as clays and waste materials are one of potential alternatives. In this research AAM was made from local waste brick made of red clay and calcined low-carbonate illite clay precursor and its properties evaluated. Waste silica gel containing amorphous silica from fertilizer production plant was proposed as additional raw material. 6 M and 7 M NaOH alkali activation solutions were used to obtain AAM. Raw materials were characterized by X-ray diffraction, laser particle size analyser, DTA/TG. Raw illite clay was calcined at a temperature of 700 to 800 °C. Waste brick was ground similar as raw clay and powder was obtained. Replacement of red clay with silica gel from 2–50 wt.% in mixture composition was evaluated. Results indicate that the most effective activator was 6 M NaOH solution and AAM with strength up to 13 MPa was obtained. Ground brick had the highest strength results and compressive strength of AAM reached 25 MPa. Silica gel in small quantities had little effect of AAM strength while significant strength reduction was observed with the increase silica gel content. The efflorescence was observed for samples with silica gel.


2011 ◽  
Vol 47 (1) ◽  
pp. 73-78 ◽  
Author(s):  
E. Darezereshki ◽  
F. Bakhtiari

In this study CuO nanoparticles were prepared via direct thermal decomposition method using basic copper sulphates as wet chemically synthesized precursor which was calcined in air at 750?C for 2h. Samples were characterized by thermogravimetric (TG-DSC), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), infrared spectrum (IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD, EDS, and IR results indicated that the synthesized CuO particles were pure. The SEM and TEM results showed that the CuO nanoparticles were of approximate spherical shape, and 170?5 nm in size. Using this method, Cuo nanoparticles could be produced without using organic solvent, expensive raw materials, and complicated equipment.


2013 ◽  
Vol 1612 ◽  
Author(s):  
Y.B. Castillo-Sánchez ◽  
J.M. Almanza-Robles ◽  
J.I. Escalante-García

ABSTRACTSupersulphated cements (SSC) are environmentally friendly binders that incorporate several raw materials, including byproducts. A systematic study was considered opportune considering the wide range of formulations found in the literature. The effect of the type and proportioning of components in the strength of SC was investigated using the Taguchi method to optimize the experimental work and to define the optimal conditions. The factors were: [A] %blast furnace slag (82.5-90%), [B] CaSO4 - alkaline activator ratio (1:0, 3:1, 1:1, 1:3 and 0:1), [C] type of CaSO4 (5 types) and [D] type of alkaline activator (portland cement, Ca(OH)2, KOH and NaCO3 and 2 combinations of these). Pastes were prepared and characterized for up to 28 days at 20°C. In general, for all values of [A] the best strength was for levels of [C] at 3:1, followed by the 1:1 and 1:0 ratios. The optimal conditions using the 28 day strength consisted of [A]= 82.5%, [B]= 3:1, [C]= flyorgypsum and [D] = portland cement, which developed excellent strength from day one and 35MPa. X-ray diffraction showed ettringite and C-S-H formation from the early ages. The microstructures showed dense matrices of reaction products well bonded to partially reacted slag grains, which in some cases showed rims of hydration products.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Magdalena Król ◽  
Piotr Rożek

ABSTRACTThe aim of this research was to determine the temperature of kaolin calcination in order to obtain an intermediate product (metakaolin) for the synthesis of geopolymers with potential application as self-supporting zeolitic membranes. The products obtained were analysed with X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The structural analysis of the metakaolins obtained suggested that the optimal temperature for the proposed application is 700°C. After alkali activation of metakaolin, it is possible to obtain zeolite A and hydroxysodalite. The factors analysed, determining the type and quantity of crystalline phases, were activation temperature and concentration of sodium hydroxide solution (activator). The largest amounts of zeolites were obtained by alkali activation with 9 mol/dm3 NaOH solution at 70°C.


2021 ◽  
Vol 317 ◽  
pp. 305-311
Author(s):  
Siti Hasnawati Jamal ◽  
Nursyafiqah Jori Roslan ◽  
Noor Aisyah Ahmad Shah ◽  
Siti Aminah Mohd Noor ◽  
Ong Keat Khim ◽  
...  

Cellulose nitrate has attracted great interest amongst researchers due to its uses in wide range of products including paint and gun propellant. Therefore, this work focuses on the synthesis of cellulose nitrate from two different sources of cellulose; plant and bacterial, in order to obtain high percentage of nitrogen content hence suitable for propellant application. The synthesis of cellulose nitrate was carried out via nitration method using nata de coco and kapok (Ceiba pentadra L) as a raw materials of cellulose. The samples were then characterized by elemental analysis, fourier transform infrared (FTIR) spectroscopy, x-ray diffraction and surface electron morphology (SEM). FTIR analysis showed the presence of NO2 groups in both nitrocellulose proving that nitrocellulose was successfully synthesized by nitration method even though it was produced from different sources of cellulose. It is also showed nitrocellulose with high percentage of nitrogen content was obtained from bacterial cellulose, 12.69% rather than plant cellulose.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Jozef Vlček ◽  
Michaela Topinková ◽  
Miroslava Klárová ◽  
Petra Maierová ◽  
Hana Ovčačíková ◽  
...  

Metakaolin (MK) prepared by the calcination of kaolin at 550 °C and fly ash (FA) from the combustion of black coal in a granulating boiler were used to prepare unfired ceramic bonding systems via the alkali activation process. A long-term stability of the mechanical properties of the prepared samples similar to the unfired ceramic systems was observed. The optimal metakaolin and fly ash ratio, the type of the activator (NaOH or water glass) and its concentration were evaluated after the hydration in: a) laboratory conditions; b) hydration box; and c) under the hydrothermal activation. Raw materials and the samples prepared by alkali activation process were characterized by XRD, XRF, TG/DTA, and FTIR methods. The mechanical properties of the prepared samples were tested using a compressive strength test after 2, 28 and 56 days of hydration. The compressive strengths of 16 and 24 MPa after 28 days of hydration were reached for FA samples activated with water glass. The alkali activation of MK was successful in the NaOH solution of the molar concentration above 5 M. The compressive strength values of metakaolin, activated hydrothermally and hydrated at laboratory conditions, reached 11.2 and 5.5 MPa, respectively, for 5 M activator of NaOH.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Konstantinos Komnitsas ◽  
Athanasia Soultana ◽  
Georgios Bartzas

In the present study, the valorization potential of marble waste in the presence of metakaolin via alkali activation was explored. The activating solution used consisted of NaOH and sodium silicate solutions. The effects of marble waste to metakaolin ratio, particle size of raw materials, curing temperature, and Na2O/SiO2 and H2O/Na2O molar ratios present in the activating solution on the main properties and the morphology of the produced alkali-activated materials (AAMs) was evaluated. The durability and structural integrity of the AAMs after firing at temperatures between 200 and 600 °C, immersion in deionized water and 1 mol/L NaCl solution for different time periods and subjection to freeze–thaw cycles were also investigated. Characterization techniques including Fourier transform infrared spectroscopy, X-ray diffraction, mercury intrusion porosimetry and scanning electron microscopy were used in order to study the structure of the produced AAMs. Τhe highest compressive strength (~36 MPa) was achieved by the AAMs prepared with marble waste to metakaolin mass ratio of 0.3 after curing at 40 °C. The results indicated that the utilization of marble waste in the presence of metakaolin enables the production of AAMs with good physical (porosity, density and water absorption) and mechanical properties, thus contributing to the valorization of this waste type and the reduction of the environmental footprint of the marble industry.


2021 ◽  
Vol 13 (16) ◽  
pp. 9203
Author(s):  
Roberto Evaristo de Oliveira Neto ◽  
Juliana de Melo Cartaxo ◽  
Alisson Mendes Rodrigues ◽  
Gelmires de Araújo Neves ◽  
Romualdo Rodrigues Menezes ◽  
...  

Tailing incorporation into mortars has been the subject of much research in recent years. Despite this, most of these studies did not investigate the harmful effects resulting from the exposure of such mortars to an environment containing aggressive agents. This work investigated the effects of perlite tailing addition into mortars containing cement CP V-ARI MAX and hydrated lime. The raw materials were subjected to chemical characterization (X-ray fluorescence (XRF)) and mineralogical (X-ray diffraction (XRD)), while the samples immersed in 1 N NaOH solution were characterized by XRD, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and compression strength (CS). The results showed the harmful effects of incorporating perlite tailings into the mortar investigated. Such a degradation was proven by linear expansion and compressive strength experiments accomplished in the samples after the test of resistance to an alkali–silicate reaction.


2016 ◽  
Vol 81 (7) ◽  
pp. 751-762 ◽  
Author(s):  
Tatiana Lastovina ◽  
Andriy Budnyk ◽  
Gevorg Khaishbashev ◽  
Egor Kudryavtsev ◽  
Alexander Soldatov

We report the synthesis of CuO, Cu/Cu2O and Cu2O/CuO nanoparticles (NPs) from the single copper (II) acetate bipyridine complex by three different methods:microwave-assisted, solvothermal and borohydride. Presence of bipyridine ligand in the copper complex would impose no need in additional stabilization during synthesis. The phases of formed NPs were identified by X-ray diffraction. CuO NPs of ~11 nm were obtained via solvothermal synthesis from alkaline solution at 160?C. The Cu/Cu2O NPs of ~80 nm were produced via microwave-assisted polyol procedure at 185-200?C, where ethylene glycol can play a triple role as a solvent, a reducing agent and a surfactant. The Cu2O/CuO NPs of ~16 nm were synthesized by a borohydride method at room temperature. Interplanar spacing calculated from the selected-area electron diffraction data confirmed the formation of Cu, CuO and Cu2O phases in respective samples. All NPs are stable and can be used for various applications including biomedicine.


2018 ◽  
Vol 25 (1) ◽  
pp. 84-99 ◽  
Author(s):  
Shihab A. Zaidan ◽  
Shahad Sarmed Abdull-Razzak

Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting method, and after the drying process, the specimens were burned at1100 oC. The results of x-ray diffraction showed that bentonite reduced the crystallization of the main ceramic phases (mullite, quartz), which stimulates the appearance of amorphous glass phases. Also, the loss of mass on ignition increased when the addition of bentonite from 5.66% to 8.2%. There was also a great convergence between the granules of porcelain when adding bentonite and thus increase the shrinkage of the dimensions from 9.33% to 12.37 %. This led to increasing the bulk density from 1.97 g/cm3 to 2.67 g/cm3 at firing temperature 1100oC, and the porosity was decreased from 17.1% to 1.44%. Diametrical strength and flexural strength (bending) increased with bentonite (14.88 to 34.46MPa), (6.2 to 8.65 MPa), respectively.  


Sign in / Sign up

Export Citation Format

Share Document