scholarly journals Effect of bentonite addition on some properties of porcelain

2018 ◽  
Vol 25 (1) ◽  
pp. 84-99 ◽  
Author(s):  
Shihab A. Zaidan ◽  
Shahad Sarmed Abdull-Razzak

Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting method, and after the drying process, the specimens were burned at1100 oC. The results of x-ray diffraction showed that bentonite reduced the crystallization of the main ceramic phases (mullite, quartz), which stimulates the appearance of amorphous glass phases. Also, the loss of mass on ignition increased when the addition of bentonite from 5.66% to 8.2%. There was also a great convergence between the granules of porcelain when adding bentonite and thus increase the shrinkage of the dimensions from 9.33% to 12.37 %. This led to increasing the bulk density from 1.97 g/cm3 to 2.67 g/cm3 at firing temperature 1100oC, and the porosity was decreased from 17.1% to 1.44%. Diametrical strength and flexural strength (bending) increased with bentonite (14.88 to 34.46MPa), (6.2 to 8.65 MPa), respectively.  

2015 ◽  
Vol 5 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Simin Li ◽  
Yongkang Lv ◽  
Zhanmeng Liu

A novel inorganic–organic composite coagulant, poly-ferric-magnesium (PFM) polydimethyldiallylammonium chloride (PDMDAAC), was prepared using FeSO4, MgSO4 and PDMDAAC as raw materials and was introduced to treat landfill leachate. The coagulation performance of the new reagent was evaluated and compared with those of other coagulants. The new reagent was characterized in terms of the analysis of ferron-timed spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The coagulation mechanism was investigated by measuring the ζ-potential reduction and chemical oxygen demand removal at different dosages. Coagulation experiments revealed that the new reagent exhibited better coagulation performance compared with the simple PFM and the PFM + PDMDAAC. Ferron-timed spectroscopy showed that the new reagent exhibited increased effective polymer species concentration. XRD and FTIR spectroscopy showed that the new reagent was not a simple mechanical mixing of PFM and PDMDAAC, but a composite system with inorganic–organic complex interpenetration networks. The predominant coagulation mechanism of the new reagent was charge neutralization at low dosages, as well as adsorption bridging and co-precipitation netting at high dosages, when treating landfill leachate.


2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


2013 ◽  
Vol 1612 ◽  
Author(s):  
Y.B. Castillo-Sánchez ◽  
J.M. Almanza-Robles ◽  
J.I. Escalante-García

ABSTRACTSupersulphated cements (SSC) are environmentally friendly binders that incorporate several raw materials, including byproducts. A systematic study was considered opportune considering the wide range of formulations found in the literature. The effect of the type and proportioning of components in the strength of SC was investigated using the Taguchi method to optimize the experimental work and to define the optimal conditions. The factors were: [A] %blast furnace slag (82.5-90%), [B] CaSO4 - alkaline activator ratio (1:0, 3:1, 1:1, 1:3 and 0:1), [C] type of CaSO4 (5 types) and [D] type of alkaline activator (portland cement, Ca(OH)2, KOH and NaCO3 and 2 combinations of these). Pastes were prepared and characterized for up to 28 days at 20°C. In general, for all values of [A] the best strength was for levels of [C] at 3:1, followed by the 1:1 and 1:0 ratios. The optimal conditions using the 28 day strength consisted of [A]= 82.5%, [B]= 3:1, [C]= flyorgypsum and [D] = portland cement, which developed excellent strength from day one and 35MPa. X-ray diffraction showed ettringite and C-S-H formation from the early ages. The microstructures showed dense matrices of reaction products well bonded to partially reacted slag grains, which in some cases showed rims of hydration products.


2021 ◽  
Vol 317 ◽  
pp. 305-311
Author(s):  
Siti Hasnawati Jamal ◽  
Nursyafiqah Jori Roslan ◽  
Noor Aisyah Ahmad Shah ◽  
Siti Aminah Mohd Noor ◽  
Ong Keat Khim ◽  
...  

Cellulose nitrate has attracted great interest amongst researchers due to its uses in wide range of products including paint and gun propellant. Therefore, this work focuses on the synthesis of cellulose nitrate from two different sources of cellulose; plant and bacterial, in order to obtain high percentage of nitrogen content hence suitable for propellant application. The synthesis of cellulose nitrate was carried out via nitration method using nata de coco and kapok (Ceiba pentadra L) as a raw materials of cellulose. The samples were then characterized by elemental analysis, fourier transform infrared (FTIR) spectroscopy, x-ray diffraction and surface electron morphology (SEM). FTIR analysis showed the presence of NO2 groups in both nitrocellulose proving that nitrocellulose was successfully synthesized by nitration method even though it was produced from different sources of cellulose. It is also showed nitrocellulose with high percentage of nitrogen content was obtained from bacterial cellulose, 12.69% rather than plant cellulose.


2008 ◽  
Vol 569 ◽  
pp. 321-324
Author(s):  
Isaías Juárez-Ramírez ◽  
Koji Matsumaru ◽  
Kozo Ishizaki ◽  
Leticia M. Torres-Martínez

Porous ceramic materials with low thermal expansion (LTE) at room temperature were prepared by heating a mixture of SiC or black-Al2O3, vitrified bonding material (VBM) and LiAlSiO4 at temperatures from 850°C to 1100°C. The mixture was prepared in adequate proportions to obtain a material with LTE according to previous works made in our laboratory. It was observed that a change in temperature provoked the formation of a new phase, LiAlSi3O8, which appears above 900°C. The presence of this new phase did not affect the thermal expansion value, keeping LTE at room temperature. All compounds showed around 40% of porosity, and Young’s modulus values of 30 GPa using black-Al2O3 or SiC. X-ray diffraction analysis (XRD) revealed that above 900°C the phase LiAlSi3O8 starts to appear as a consequence of the melting of VBM, which is reacting with the raw materials. SEM micrographs showed the presence of SiC or black-Al2O3 grains joined by VBM, which is acting as a bridge between them.


2014 ◽  
Vol 1077 ◽  
pp. 135-138
Author(s):  
Luiz Oliveira Veriano dalla Valentina ◽  
Marilena Valadares Folgueras ◽  
Wanessa Rejane Knop ◽  
Maria Cristina Pacheco do Nascimento ◽  
Glaucia Aparecida Prates

As the raw materials used in the ceramic materials manufacturing are natural, it is important to use them as a alternative materials, thus decreasing the elements demand taken from nature. This paper aims the characterization of foundry solid powder exhaust from a brazilian company located in Joinville - SC as an alternative raw material for ceramic coating by X-ray diffraction (XRD), thermal analysis (DSC) and thermogravimetric (TG). The dust depletion is caused in the manufacturing mold sand process, when the bentonita (clay), silica sand and coal during the metal parts production are mixed in green sand production. The raw materials were characterized through X-ray diffraction (XRD), thermal (DSC) and thermogravimetric analisys (TG). The atomized powder thermogravimetric analysis curve shows three intervals associated with the mass loss and it is typical of clay commercial application.


2016 ◽  
Vol 694 ◽  
pp. 184-188
Author(s):  
Nurul Shazwani Mohd Zain ◽  
Hasmaliza Mohamad ◽  
Tuti Katrina Abdullah ◽  
Siti Noorfazliah Mohd Noor ◽  
Ahmad Kamil Fakhruddin Mokhtar

Lime sludge (LS) is a solid waste from lime making industry and normally disposed in landfill or recycled. LS has been studied as one of the raw materials in various ceramic productions such as bricks, ceramic tiles and glass-ceramics. In this study, LS was utilized in the preparation of bioactive glass using the 45S5 bioactive glass. The 45S5 bioactive glass contains SiO2 (45 wt.%), Na2O (24.5 wt.%), CaO (24.5 wt.%) and P2O5 (6 wt.%). It has the ability to bond with soft tissue and promote bone growth. The LS was combined with bioactive glass as a potential replacement of calcium carbonate (CaCO3). The ratio between LS:CaO was varied (0:100, 25:75, 50:50, 75:25 and 100:0) to study the effect of LS weight percentage on the bioctive glass. The preparations of bioactive glasses involved batching, mixing, melting at 1400 °C, water quench and milling. LS was characterized using X-ray diffraction (XRD), while the fabricated glasses were characterized using particle size analyzer, XRD and scanning electron microscopy (SEM). The XRD results proved that the phase and chemical composition of bioactive glass were not affected by the addition of LS. The XRD and SEM results indicated that the addition of lime sludge in bioactive glass was effective to promote the formation of hydroxyapatite (HA) layer.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7321
Author(s):  
Agata Stempkowska

The aim of the research was to check whether the system of three fluxes based on lithium aluminium silicate and alkali feldspars has a eutectic point, i.e., with the lowest melting temperature. Lithium was introduced into the mixtures in the form of petalite, which occurs naturally in nature (Bikita Zimbabwe deposit). Using naturally occurring raw materials such as petalite, sodium feldspar, and potassium feldspar, an attempt was made to obtain eutectics with the lowest melting point to facilitate thermal processing of the mineral materials. In addition, the high-temperature viscosity of the mineral alloys and physical parameters such as density, linear shrinkage, and open porosity were studied. The study showed that in these systems, there is one three-component eutectic at 1345 °C, with the lowest viscosity of 1·105 Pas and the highest density of 2.34g/cm3, with a weight content of petalite 20%, sodium feldspar 20%, and potassium feldspar 20%.


2019 ◽  
Vol 64 (9) ◽  
pp. 870 ◽  
Author(s):  
A. D. Scorbun ◽  
S. V. Gabielkov ◽  
I. V. Zhyganiuk ◽  
V. G. Kudlai ◽  
P. E. Parkhomchuk ◽  
...  

Amorphous, glass, and glass-ceramic materials practically always include a significant number (more than eight) of crystalline phases, with the contents of the latter ranging from a few wt.% to several hundredths or tenths of wt.%. The study of such materials using the method of X-ray phase analysis faces difficulties, when determining the phase structure. In this work, we will develop a method for the analysis of the diffraction patterns of such materials, when diffraction patterns include X-ray lines, whose intensities are at the noise level. The identification of lines is based on the search for correlations between the experimental and test lines and the verification of the coincidence making use of statistical methods (computer statistics). The method is tested on the specimens of a-quartz, which are often used as standard ones, and applied to analyze lava-like fuel-containing materials from the destroyed Chornobyl NPP Unit 4. It is shown that the developed technique allows X-ray lines to be identified, if the contents of separate phases is not less than 0.1 wt.%. The method also significantly enhances a capability to determine the phase contents quantitatively on the basis of lines with low intensities.


2019 ◽  
Vol 967 ◽  
pp. 281-285
Author(s):  
Annisa Nur Qadry ◽  
Noor Afifah Kharisma ◽  
Subaer

CuO nanoparticles (CuO-NPs) have been attracted much attention recently as a functional material. This study was conducted to investigate the properties of geopolymer-CuO-NPs as a functional composite. Geopolymer paste was produced through the alkali-activation method of metakaolin. CuO-NPs was synthesized from precipitation of CuSO4 in NaOH solution. The composites were developed by mixing geopolymer with CuO-NPs varying the concentration of CuO-NPs relative to metakaolin. The structure of the raw materials, as well as the resulting composites, was examined by using x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of the composites were measured by using compressive and flexural measurements. The measurements results showed that geopolymer CuO-NPs composites offer a wide range of potential structural applications.


Sign in / Sign up

Export Citation Format

Share Document