Lignin-Based Polybenzoxazine Derived from Empty Fruit Bunch Fibers with Good Thermal and Mechanical Properties

2020 ◽  
Vol 981 ◽  
pp. 121-126
Author(s):  
Nurfatin Farhanah Rohimi ◽  
Rasidi Roslan ◽  
Nurjannah Salim ◽  
Siti Noor Hidayah Mustapha ◽  
Sarani Zakaria ◽  
...  

In this study, a renewable phenolic component was synthesized using empty fruit bunch fibers via microwave-assisted liquefaction known as Liquefied Empty Fruit Bunch (LEFB). LEFB can be used as phenolic derivative to replace petroleum-based phenol as it contains aromatic group in lignin that can be used as starting materials to synthesis polybenzoxazine resins. A Lignin-based benzoxazine (L-PBz) has been synthesized using a solventless approach from the reaction of LEFB, furfurylamine as the amine component and paraformaldehyde via Mannich condensation reaction. Two different ratios of LEFB:furfurylamine:paraformaldehyde which are 1:1:1 and 1:1:2 were investigated. The thermal properties and polymerization behavior of the L-PBz were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. In addition, cured-polybenzoxazine composites were also prepared by hot-pressing the uncured L-PBz at 250 °C for 4 hours, and the mechanical properties of the composites were assessed through Izod impact strength test. TGA analysis showed that, L-PBz with ratio of 1:1:1 exhibit a high char yield compared to 1:1:2 which is 47% vs 43%, respectively, after being heated until 900 °C. However, L-PBz with ratio of 1:1:2 showed good polymerization behavior compared to 1:1:1 which indicated by the curing temperature 215 °C vs 238 °C. L-PBz composites, which added with cellulose nanocrystal (CNC) fillers have better strength compared with the absence of fillers. As a conclusion, the aromatic structure of lignin in empty fruit bunch fibers has presented a promising alternative to replace petroleum-based phenol in polybenzoxazine synthesis.

2016 ◽  
Vol 29 (9) ◽  
pp. 1016-1026 ◽  
Author(s):  
Mingli Jiang ◽  
Xingqiang Zou ◽  
Yumin Huang ◽  
Xiaobo Liu

Allyl-functional phthalonitrile (DBPA-Ph) and bismaleimide (BMI) have been considered as advanced composite-matrix resins applied in various fields. In this work, self-promoted polymerization behavior and processability of DBPA-Ph/BMI system were investigated in detail. To further reveal the effect of BMI on the properties of DBPA-Ph/BMI system, the blends and the prepolymers of DBPA-Ph/BMI were prepared in different proportions. Their curing and rheological behaviors were investigated by differential scanning calorimetry and dynamic rheological analysis. The results further confirmed the possible reaction mechanisms and demonstrated that DBPA-Ph/BMI prepolymers exhibited good processability, which included wide processing window (approximately 75°C), low melting viscosity (<0.2 Pa·s), and better reactivity. The copolymers exhibited satisfactory thermal stabilities ( T5% > 421°C, char yield at 600°C >70%). Moreover, the DBPA-Ph/BMI/glass fiber composite laminates were prepared and the effect of the curing temperature and BMI content on mechanical properties and dielectric properties were also investigated. The results show that the composite laminates exhibit favorable mechanical properties and weak frequency dependence of dielectric properties over a wide frequency range. Above all, the research on DBPA-Ph/BMI system could expand its applications in industry, especially in the areas, which require high temperature resistance and excellent mechanical and dielectric properties.


2021 ◽  
Vol 891 ◽  
pp. 150-163
Author(s):  
Jorge Mauricio Fuentes ◽  
Omar Flor Unda ◽  
Santiago Ferrandiz ◽  
Franyelit Suarez

In this article presents evidence about performance of mechanical properties of polycarbonate and nylon materials, which are used in the additive manufacturing by deposition of molten material and that have been subjected to sterilization processes by moist heat at 121°C and dry heat at 140°C. This study provides useful information to consider the use of these materials in sanitary and sterile settings. Mechanical tests of tensile, flex, hardness, Izod impact, thermal tests in Differential Scanning Calorimetry DSC, Thermomechanical analysis TMA and Scanning Electron Microscopy SEM were performed. It is concluded that the mechanical and thermal properties have not been altered through the effect of temperature in sterilization processes.


2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


2016 ◽  
Vol 36 (8) ◽  
pp. 853-860 ◽  
Author(s):  
Vahabodin Goodarzi ◽  
Zahed Ahmadi ◽  
Mohammad Reza Saeb ◽  
Farkhondeh Hemmati ◽  
Mehdi Ghaffari ◽  
...  

Abstract Since polyethylene (PE) has been widely accepted for the production of high-pressure fluid conveying pipelines, studies devoted to weldability of PE connections were always of major importance. In this study, two industrial PE grades designed for pipe production, namely PE80 and PE100, were injection molded, cut, and then welded as PE100-PE100, PE100-PE80, and PE80-PE80. The heat-welded joints were assessed by differential scanning calorimetry and tensile measurements. The results obtained from thermal and mechanical analyses were compared with equivalents for aged samples. Thermal analysis revealed that the melting point of the PE100-PE100 sample is obviously larger than the one for the PE80-PE80 joint, for the PE80 chains deteriorate the crystallization of PE100. Further, the PE80-PE80 sample showed the lowest lamellar thickness and crystalline molecular weight among the studied joints. The aging process was found to increase lamellar thickness and molecular weight, though in the PE100-PE100 sample such quantities very limitedly increased. The yield stress of aged joints was higher than that for just-prepared samples, while an inverse trend was seen for strain at break. From a practical viewpoint, the PE100-PE100 welds offer better properties.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2794
Author(s):  
Yunliang Xing ◽  
Xianru He ◽  
Rui Yang ◽  
Kan Zhang ◽  
Shengfu Yang

A novel resveratrol-based bio-benzoxazine monomer (RES-al) containing an allyl group has been synthesized using resveratrol, allylamine, and paraformaldehyde via Mannich condensation reaction, and its chemical structures have been characterized by FT-IR spectroscopy and NMR techniques. The polymerization behavior of this benzoxazine resin has been investigated using in situ FT-IR and differential scanning calorimeter (DSC) measurements, and the thermal-mechanical properties of its corresponding polybenzoxazines are evaluated by DMA and TGA. We show that by controlling the curing process of the oxazine ring, the C=C bond in resveratrol, and the allyl group in RES-al, the cross-linking network of the polybenzoxazine can be manipulated, giving rise to tunable performance of thermosets. As all curable functionalities in RES-al are polymerized, the resulted polybenzoxazine exhibits a good thermal stability with a Tg temperature of 313 °C, a Td5 value of 352 °C, and char yield of 53% at 800 °C under N2.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 51 ◽  
Author(s):  
Adriana Nicoleta Frone ◽  
Dan Batalu ◽  
Ioana Chiulan ◽  
Madalina Oprea ◽  
Augusta Raluca Gabor ◽  
...  

Biodegradable blends and nanocomposites were produced from polylactic acid (PLA), poly(3-hydroxybutyrate) (PHB) and cellulose nanocrystals (NC) by a single step reactive blending process using dicumyl peroxide (DCP) as a cross-linking agent. With the aim of gaining more insight into the impact of processing methods upon the morphological, thermal and mechanical properties of these nanocomposites, three different processing techniques were employed: compression molding, extrusion, and 3D printing. The addition of DCP improved interfacial adhesion and the dispersion of NC in nanocomposites as observed by scanning electron microscopy and atomic force microscopy. The carbonyl index calculated from Fourier transform infrared spectroscopy showed increased crystallinity after DCP addition in PLA/PHB and PLA/PHB/NC, also confirmed by differential scanning calorimetry analyses. NC and DCP showed nucleating activity and favored the crystallization of PLA, increasing its crystallinity from 16% in PLA/PHB to 38% in DCP crosslinked blend and to 43% in crosslinked PLA/PHB/NC nanocomposite. The addition of DCP also influenced the melting-recrystallization processes due to the generation of lower molecular weight products with increased mobility. The thermo-mechanical characterization of uncross-linked and cross-linked PLA/PHB blends and nanocomposites showed the influence of the processing technique. Higher storage modulus values were obtained for filaments obtained by extrusion and 3D printed meshes compared to compression molded films. Similarly, the thermogravimetric analysis showed an increase of the onset degradation temperature, even with more than 10 °C for PLA/PHB blends and nanocomposites after extrusion and 3D-printing, compared with compression molding. This study shows that PLA/PHB products with enhanced interfacial adhesion, improved thermal stability, and mechanical properties can be obtained by the right choice of the processing method and conditions using NC and DCP for balancing the properties.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 258 ◽  
Author(s):  
Che Nor Aiza Jaafar ◽  
Muhammad Asyraf Muhammad Rizal ◽  
Ismail Zainol

The mechanical performance of silica modified epoxy at various concentration of sodium hydroxide for surface treatment of multi-axial kenaf has been analyzed. Epoxy resin with amine hardener was modified with silica powder at 20 phr and toughened by treated kenaf fiber that immerses in various concentrations of sodium hydroxide (NaOH) ranging from 0% to 9% of weight. The composite was analyzed through differential scanning calorimetry (DSC) to ensure complete curing process. The mechanical properties of the composites were analyzed through flexural test, Charpy impact test and DSC to ensure the complete curing process. DSC analysis results show epoxy sample was completely cured at above 73°C that verifies the curing temperature for preparation for the composite. Hence, 3% NaOH treated composite exhibits the best mechanical properties, with 10.6 kJ/m2 of impact strength, 54.1 MPa of flexural strength and 3.5 GPa of flexural modulus. It is due to the improvement of fiber-matrix compatibility. Analysis by SEM also revealed that a cleaner surface of kenaf fiber treated at 3% NaOH shown cleaner surface, thus, in turn, improve surface interaction between fiber and matrix of the composite. The composites produced in this work has high potential to be used in automotive and domestics appliances.


1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


Sign in / Sign up

Export Citation Format

Share Document