Aspects of Testing and Material Properties of Fiber Concrete

2019 ◽  
Vol 292 ◽  
pp. 9-14 ◽  
Author(s):  
Oldrich Sucharda ◽  
Vlastimil Bilek

Concrete is typical composite material and its properties can be very variable. Material properties are also influenced with the technology of processing, manufacturing and treatment after concreting. Reinforcement in form of fibers is often added for improving tensile strength. This paper deals with specific testing of fibre concrete. Test results of series of specimens are presented for selected transport concrete composition, which is reinforced with amount of fibers 25, 50, 75 kg / m3. Fibers were added directly into the into the concrete mixer in the factory. Each series includes more than 25 test samples. The tests include the compressive strength of a cube and cylindrical, testing of modulus of elasticity, and the split tensile strength in the direction perpendicular to and parallel to the filling. Within the research project also a few types of bending tests were performed. Four variants of bending test that vary in span of 500 or 600 mm, samples with and without a notch, and in a three- / four-point configuration. As a summary, broader evaluation and functional dependencies are derived.

Author(s):  
L. A. Ryabicheva ◽  
R. E. Velikotskii

Meeting the high requirements to the whole complex of mechanical characteristics is the main criteria of reliability and long service life of shipbuilding steels. To determine them it is necessary to apply modern methodologies of metal science analysis. Revelation of regularity of influence of alloying, carbon equivalent, microstructure and production technology on results of bending test of low-alloyed grades А32, D32, Е32 shipbuilding steels was the purpose of the study. Production of steel, rolling, thermal treatment, mechanical tests and metal science studies of the low-alloyed shipbuilding steels was made in Alchevsk steel-works. A quantity estimation of the D32 grade sheets microstructure was made as a result of studies, having both satisfactory and not satisfactory results of bending tests. It was determined, that stitch oxides have the most negative influence on the results of bending tests for both hot-rolled and normalized sheets. Sheets with not satisfactory results of bending tests differ from those, which passed the tests by higher value of streakiness points, particular of perlite, and in normalized condition – by higher value of Widmanstatten pattern. Sheets, which did not passed the tests, have yield strength by 5–25 MPa and tensile strength by 14–39 MPa higher, while the tensile strength was by 1.2–4.8% lower. For stable yield in bending tests within 98–100% it is necessary the tensile strength level to be not less than 30%. It is reasonably all the sheets of 10–20 mm thick out of heats with carbon equivalent higher 0.54% to subject compulsory normalization. Further increase of the sheets product yield can be achieved by decreasing of phosphor mass share and increasing of general steel purity, first of all, by decreasing of oxide inclusions


This research work has been investigated the agriculture solid waste of sugarcane bagasse ash (SCBA) materials replacing Portland cement and produces the assured quality of concrete. The current research work for various mixes of experimental test results shows the higher compressive strength was 37.51MPa at 28-days, 38.10 MPa at 56-days, the best mix consisting of SCBA (wet sieving method) content up to 15% (by weight of binding materials) along with 1.5% of waste tin fibers and also an excellent improvement trend was noted in flexural rigidity of concrete to addition of tin fibers shows the higher bending stress for all mixes except reference as well as more than 15% of SCBA concrete at different curing days. However, this study focused on the indirect measurement of tensile strength in SCBA concrete obtained the higher split tensile strength was 3.75MPa at 28-days, 3.95MPa at 56-days. It is concluded based on the various test results for different curing days the optimum replacement level of SCBA up to 15% of Portland cement was fixed and achieve the target strength of M25 grade of Portland cement concrete at 28 days.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2015 ◽  
Vol 1083 ◽  
pp. 90-96 ◽  
Author(s):  
Ana Almerich-Chulia ◽  
E. Fenollosa ◽  
I. Cabrera

In order to obtain GFRP reinforcement bars it is necessary to undertake tests regulated code which require important mechanical tools. This paper presents a method which allows for determining GFRP rebars tensile strength value from their flexural strength value which has been obtained with a simple, inexpensive and reliable test. This method results will be verified by applying it to values obtained in a series of bending tests and comparing these results with values obtained in tensile tests. Values concordance for small diameter GFRP rebars is very good.


2021 ◽  
Vol 15 (2) ◽  
pp. 184-194
Author(s):  
Renato Souza ◽  
Roberto Duarte ◽  
Manuel Alves ◽  
Juliana Daguano ◽  
Santos dos ◽  
...  

Fatigue is one of the most important properties to be considered in ceramic dental implants due to cyclic mechanical stresses arising from the chewing process. In this work, the fatigue behaviour of hydrothermally degraded ZrO2-based ceramics stabilized with 3mol% Y2O3 (3Y-TZP) was studied in 4-point bending tests. Samples of 3Y-TZP were compacted (100MPa), sintered at 1475 ?C for 2 h, polished and hydrothermally degraded in an autoclave as described in the ISO-13356 standard. The samples were characterized by their relative density, crystalline phase composition, microstructure and surface roughness. The highly dense (>99.6%TD) sintered 3Y-TZP ceramics has only tetragonal t-ZrO2 phase, even after hydrothermal ageing. Furthermore, the ceramic materials presented a Vickers hardness of 12.7?0.2GPa, a fracture toughness of 7.1?0.3MPa?m1/2 and a 4-point bending strength of 940.1?67MPa. Based on the bending test results 5 different stress levels for the fatigue tests were selected and conducted by cyclic 4-point bending obtaining the S-N curve. Weibull statistics was used for the statistical analysis. The fatigue tests indicate that the limit of fatigue resistance of this 3Y-TZP ceramics is around 550MPa, i.e. higher than the limits established in the ISO-13356 standard for the use of Y-TZP ceramics for the manufacture of implants. The fatigue behaviour of the investigated 3Y-TZP ceramics was related to the toughening mechanisms acting in Y-TZP ceramics, such as transformation toughening related to t?m phase transformation and microcracking.


Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


2021 ◽  
Vol 871 ◽  
pp. 330-339
Author(s):  
Fang Hua Li

Self-compacting steel fiber concrete must meet the strength standard after steel fiber is added and must have good fluidity. The test results show that the addition of steel fiber to concrete will affect the fluidity of concrete. Compared with ordinary concrete, the addition of steel fiber will improve the compressive strength and flexural tensile strength of concrete to varying degrees. The mix proportion test can be carried out in stages, i.e. the mix proportion meeting all performance indexes used is determined first, then steel fiber is added and adjusted to determine the best mix proportion.


2021 ◽  
Vol 28 (1) ◽  
pp. 64-72
Author(s):  
Jawad Ahmad ◽  
Fahid Aslam ◽  
Osama Zaid ◽  
Rayed Alyousef ◽  
Hisham Alabduljabbar ◽  
...  

Abstract Self-Consolidating Concrete (SCC) has also brittle characteristics. This is unacceptable for any construction industry. The addition of fibers is one of the most common methods to enhance the tensile strength of concrete. Fiber controls the cracking phenomena and enhances the energy absorption capability of the concrete. On the other hand, the addition of fibers has a negative impact on the workability of fresh concrete. In this paper, a detailed study on the influence of Propylene fibers (PP) on the fresh properties of SCC was carried out. PFs were added into concrete mixes in a proportion of 1.0%, 2.0%, 3.0%, and 4.0% by weight of cement to offset its undesirable brittle nature and enhance its tensile strength. The fresh characteristics were evaluated based on its passing ability, flowability using, Slump flow, Slump T50 Spread time, L-Box and V-funnel tests as well as mechanical performance (compressive and split tensile strength) were also evaluated at 7,14 and 28 days curing. Test results indicate that the passing and filling ability decreased as the substitution ratio of PP increased. Besides, the test result indicates that strength was increased up to 2.0% addition of PP and then decrease gradually.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
M. N. Setia Nusa ◽  
Hernadi .

Inspection and testing is done to determine the metallurgical phenomena that occur on the boiler pipes that have been operating several years continuously at a temperature of 560 ° C. The study is also intended to determine the operational feasibility of the pipeline and to avoid undetected damage.Investigation of these pipes is also carried out in the laboratory with micro-structure analysis method, inspection crust, tensile test, bending test, hardness and thickness test.From the analysis of the microstructure, boiler pipes are in condition ferrite pearlite spheroidization with a crust that is thick and contains graphite. In addition, The pipes are attacked by uniform and pitting corrosion. The results of tensile and bending tests are still normal (standard). The hardness test results show significant values compared to the standard, as well as the thickness of the pipe thinning as a result of the corrosion process.AbstrakInspeksi dan pengujian dilakukan untuk mengetahui fenomena metalurgis yang terjadi terhadap pipa ketel uap yang sudah beroperasi beberapa tahun secara terus menerus pada suhu 560°C. Penelitian juga dimaksudkan untuk mengetahui kelayakan operasional pipa tersebut dan untuk menghindari terjadinya kerusakan yang tidak terdeteksiInvestigasi pipa-pipa tersebut juga dilakukan di laboratorium dengan metode analisa struktur mikro, pemeriksaan kerak, uji tarik, uji bending, uji kekerasan dan ketebalan.Dari analisa struktur mikro, pipa ketel berada pada kondisi ferrit spheroidisasi perlit dengan lapisan kerak yang cukup tebal serta mengandung grafit. Selain itu juga terjadi serangan korosi merata dan korosi sumuran. Hasil uji tarik dan hasil uji bengkok masih normal (memenuhi standar). Hasil uji kekerasan terjadi penurunan nilai yang signifikan dibanding standar, demikian juga pada ketebalan pipa terjadi penipisan akibat dari adanya proses korosi.Keywords: Boiler pipe, spheroidization, corrosion, thinning.


2020 ◽  
Vol 19 (2) ◽  
pp. 087-100
Author(s):  
Jakub Gontarz ◽  
Jacek Szulej

The paper presents the results of mechanical tests of three types of rocks from stone mines in Poland. Compression tests of cubic samples, three-point bending tests of beams, bending of beams with notch and testing of tensile strength using the quasi-Brazilian method were performed. Based on the tests, the compressive strength, tensile strength, Young's modulus, and Poisson's ratios were determined. The stress intensity factor and critical strain energy release rate in mode I were determined from the bending test of the notched beams. The determined values were used as parameters of computer models which are used to verify the authors’ method of predicting the crack propagation in the Abaqus FEA system.


Sign in / Sign up

Export Citation Format

Share Document