Micromachined Snap-In Resonators

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001920-001935 ◽  
Author(s):  
Colin Stevens ◽  
Robert Dean ◽  
Chris Wilson

MEMS resonators have many applications, including micromachined gyroscopes, resonating pressure sensors and RF devices. Typically, MEMS resonators consist of a proof mass and suspension system that allows the proof mass motion in one or two directions. Micromachined actuators provide kinetic energy to the proof mass, usually at its resonant frequency. In the simplest resonators, the actuators are driven with an AC signal at or near the resonant frequency. In more complex resonators, the actuator-proof mass system is placed in an amplifier feedback circuit so that the electromechanical system self-resonates. MEMS parallel plate actuators (PPAs) are simple to realize, yet complex nonlinear variable capacitors. If a DC voltage is applied in attempt to move the proof mass greater than 1/3 of the electrode rest gap distance, the device becomes unstable and the electrodes snap into contact. A current limiting resistor is often placed in series with the PPA to limit short circuit current due to a snap-in event. Consider the effect of placing a large resistor, on the order on 10 meg-Ohms, in series with the PPA. Then apply a DC voltage across the resistor-PPA pair of sufficient voltage to cause snap-in. Once the electrostatic force (ES) exceeds the spring force (SF), the electrodes will accelerate toward each other. The capacitance between the electrodes swells as the separation distance shrinks. Since the large resistor limits the charging rate of the capacitor, the voltage across it drops. Once the SF exceeds the EF, the momentum of the movable electrode brings it into contact with the fixed electrode, discharging the capacitor. The movable electrode then accelerates away from the fixed electrode while the resistor slowly allows recharging. After recharging, the cycle repeats resulting in stable oscillation. This resonator requires only a DC power supply, a resistor and a MEMS PPA.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3759
Author(s):  
Kai Huang ◽  
Lie Xu ◽  
Guangchen Liu

A diode rectifier-modular multilevel converter AC/DC hub (DR-MMC Hub) is proposed to integrate offshore wind power to the onshore DC network and offshore production platforms (e.g., oil/gas and hydrogen production plants) with different DC voltage levels. The DR and MMCs are connected in parallel at the offshore AC collection network to integrate offshore wind power, and in series at the DC terminals of the offshore production platform and the onshore DC network. Compared with conventional parallel-connected DR-MMC HVDC systems, the proposed DR-MMC hub reduces the required MMC converter rating, leading to lower investment cost and power loss. System control of the DR-MMC AC/DC hub is designed based on the operation requirements of the offshore production platform, considering different control modes (power control or DC voltage control). System behaviors and requirements during AC and DC faults are investigated, and hybrid MMCs with half-bridge and full-bridge sub-modules (HBSMs and FBSMs) are used for safe operation during DC faults. Simulation results based on PSCAD/EMTDC validate the operation of the DR-MMC hub.


1997 ◽  
Vol 119 (1) ◽  
pp. 52-59 ◽  
Author(s):  
M. J. Panza ◽  
D. P. McGuire ◽  
P. J. Jones

An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


2013 ◽  
Vol 336-338 ◽  
pp. 281-285
Author(s):  
Yong Liang Wang ◽  
Wen Guo Chen ◽  
Zhao Yu Wang ◽  
Gui Fu Ding ◽  
Xiao Lin Zhao

A novel horizontal sensitive inertial micro-switch with low g value was proposed and simulated in ANSYS, and was fabricated on quartz substrate based on non-silicon surface micromaching technology. Due to this special design, the micro-switch has a very good horizontal unidirectional sensitivity. The contact effect is improved by a modification of the traditional design. The flexible contact between the proof mass electrode and fixed electrode prolongs the contact time and reduces the rebound effect. The contact time is about 100μs under a half-sine wave shock with a12g peak value.


2021 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Serdean

The influence of the driving electrode positions on the dynamic response of polysilicon MEMS resonators used in biosensing applications is studied as a function of the operating conditions (vacuum versus free-air operating mode). The scope of this research work is orientated towards identifying the effect of driving electrode position on the dynamic response of sensing MEMS used in biomass detection. The mass-deposition detection is based on the change in the resonant frequency of vibrating elements considering a biological detection film deposited on the oscillating structure. The operating conditions, such as medium pressure, change the behavior of the dynamic response including the resonant frequency, the amplitude, and the velocity of oscillations as well as the quality factor and the loss of energy. The change in the dynamic response of the investigated MEMS cantilevers as a function of the lower electrode position and operating conditions is evaluated using a Polytec Laser Vibrometer. The decrease in the amplitude and velocity of the oscillations if the lower electrode is moved from the beam free-end toward the beam anchor is experimentally monitored. The changes in the response of samples in vacuum are slightly influenced by the electrode position compared with the response of the same sample in ambient conditions. Moreover, the effect of oscillating modes (first, second and third modes) is taken into consideration to improve the dynamical detection of the investigated samples. The obtained results indicate that different responses of MEMS resonators can be achieved if the position of the driving electrode is moved from the cantilever free-end toward the anchor. Indeed, the resonator stiffness, velocity and amplitude of oscillations are significantly modified for samples oscillating in ambient conditions for biological detection compared with their response in vacuum.


Author(s):  
Michael J. Panza ◽  
Dennis P. McGuire ◽  
Peter J. Jones

Abstract An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000853-000880
Author(s):  
Chong Li ◽  
C. Lavinia Elana ◽  
Robert N. Dean ◽  
George T. Flowers

Several types of micro-devices are adversely affected by high frequency mechanical vibrations present in the operating environment. Examples include MEMS vibratory gyroscopes and resonators, and micro-optics. Various types of MEMS vibration isolators have been developed for use in the packaging of these vibration sensitive devices. Passive isolators consist of a spring-mass-damper MEMS device and usually have a very high mechanical quality factor, which makes them susceptible to ringing at the isolator's resonant frequency. Active isolators have been realized by using state sensing of the proof mass motion and feeding one or more of these states back through an actuator to adjust the frequency response of the isolator. For example, the technique known as skyhook damping uses velocity feedback to adjust, and typically increase, the damping of the isolator. Although these technique are doable, they require state sensing or state estimation, with feedback electronics to drive the actuator. A simpler MEMS active vibration isolator architecture employs only a parallel plate actuator (PPA) with the MEMS spring-mass-damper structure. The PPA driven with a DC voltage, in its stable operating range, displaces the proof mass, which results in a change in the effective system spring constant due to the electrostatic spring softening effect. This results in a change in the resonant frequency and the quality factor of the isolator. However, due to the nonlinearities inherent in this type of device, the stable operating range is reduced as the PPA voltage is increased. Furthermore, even when the isolator is stable in steady-state, a sufficiently large transient response can also drive it into the unstable regime, resulting in the electrodes snapping into contact. In this study, the PPA based active vibrator isolator is developed and its performance is evaluated. The characteristics of the transient instability are investigated and its stable range of operation is specified, for booth external disturbances and rapid application of the control voltage. This MEMS PPA based active vibration isolator can improve performance compared to passive isolators, while being much simpler than state feedback active isolators.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 577 ◽  
Author(s):  
Muhammad Saqib ◽  
Muhammad Mubasher Saleem ◽  
Naveed Mazhar ◽  
Saif Awan ◽  
Umar Shahbaz Khan

This paper presents the design and analysis of a multi degree of freedom (DOF) electro-thermally actuated non-resonant MEMS gyroscope with a 3-DOF drive mode and 1-DOF sense mode system. The 3-DOF drive mode system consists of three masses coupled together using suspension beams. The 1-DOF system consists of a single mass whose motion is decoupled from the drive mode using a decoupling frame. The gyroscope is designed to be operated in the flat region between the first two resonant peaks in drive mode, thus minimizing the effect of environmental and fabrication process variations on device performance. The high gain in the flat operational region is achieved by tuning the suspension beams stiffness. A detailed analytical model, considering the dynamics of both the electro-thermal actuator and multi-mass system, is developed. A parametric optimization is carried out, considering the microfabrication process constraints of the Metal Multi-User MEMS Processes (MetalMUMPs), to achieve high gain. The stiffness of suspension beams is optimized such that the sense mode resonant frequency lies in the flat region between the first two resonant peaks in the drive mode. The results acquired through the developed analytical model are verified with the help of 3D finite element method (FEM)-based simulations. The first three resonant frequencies in the drive mode are designed to be 2.51 kHz, 3.68 kHz, and 5.77 kHz, respectively. The sense mode resonant frequency is designed to be 3.13 kHz. At an actuation voltage of 0.2 V, the dynamically amplified drive mode gain in the sense mass is obtained to be 18.6 µm. With this gain, a capacitive change of 28.11   f F and 862.13   f F is achieved corresponding to the sense mode amplitude of 0.15   μ m and 4.5   μ m at atmospheric air pressure and in a vacuum, respectively.


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Piezoelectric energy harvesting refers to conversion of mechanical energy into usable electrical energy. In the modern connected world, wireless sensor nodes are scattered around the environment. These nodes are powered by batteries. Batteries require regular replacement, hence energy harvesters providing continuous autonomous power are used to power these sensor nodes. This work provides two different fixation modes for the resonant frequency for the two modes. Variation in geometric parameter and their effect on resonant frequency and output power have been analyzed. These harvesters capture a wide-band of ambient vibrations and convert them into usable electrical energy. To capture random ambient vibrations, the harvester used is a wide-band energy harvester based on conventional seesaw mechanism. The proposed structure operates on first two resonant frequencies in comparison to the conventional cantilever system working on first resonant frequency. Resonance frequency, as well as response to a varying input vibration frequency, is carried out, showing better performance of seesaw cantilever design. In this work, modeling of wide-band energy harvester with proof mass is being performed. Position of proof mass plays a key role in determining the resonant frequency of the harvester. Placing the proof mass near or away from fixed end results in increase and decrease in stress on the piezoelectric layer. Hence, to avoid the breaking of cantilever, the position of proof mass has been analyzed.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950072 ◽  
Author(s):  
S. K. Lai ◽  
X. Yang ◽  
C. Wang ◽  
W. J. Liu

This work aims to construct accurate and simple lower-order analytical approximation solutions for the free and forced vibration of electrostatically actuated micro-electro-mechanical system (MEMS) resonators, in which geometrical and material nonlinearities are induced by the mid-plane stretching, dynamic pull-in characteristics, electrostatic forces and other intrinsic properties. Due to the complexity of nonlinear MEMS systems, the quest of exact closed-form solutions for these problems is hardly obtained for system design and analysis, in particular for harmonically forced nonlinear systems. To examine the simplicity and effectiveness of the present analytical solutions, two illustrative cases are taken into consideration. First, the free vibration of a doubly clamped microbeam suspended on an electrode due to a suddenly applied DC voltage is considered. Based on the Euler–Bernoulli beam theory and the von Karman type nonlinear kinematics, the dynamic motion of the microbeam is further discretized by the Galerkin method to an autonomous system with general nonlinearity, which can be solved analytically by using the Newton harmonic balance method. In addition to large-amplitude free vibration, the primary resonance response of a doubly clamped microbeam driven by two symmetric electrodes is also investigated, in which the microbeam is actuated by a bias DC voltage and a harmonic AC voltage. Following the same decomposition approach, the governing equation of a harmonically forced beam model can be transformed to a nonautonomous system with odd nonlinearity only. Then, lower-order analytical approximation solutions are derived to analyze the steady-state resonance response of such a problem under a combination of various DC and AC voltage effects. Finally, the analytical approximation results of both cases are validated, and they are in good agreement with those obtained by the standard Runge–Kutta method.


Sign in / Sign up

Export Citation Format

Share Document