Upscaling panel size for Cu plating on FOPLP (Fan Out Panel Level Packaging) applications to reduce manufacturing cost

2018 ◽  
Vol 2018 (1) ◽  
pp. 000037-000042
Author(s):  
Henning Hübner ◽  
Christian Ohde ◽  
Dirk Ruess

Abstract Electrolytic metal deposition is a key process step in the manufacturing of vertical and horizontal interconnections used in today's PCBs and IC substrates on one hand and advanced packaging applications on the other hand. Historically both application areas were clearly defined and separated by different requirements in feature sizes and substrate formats. PCBs and IC substrates were based on organic large scale substrates with rather large features while advanced packaging technology is wafer based with the capability to incorporate fine features down to a few microns. The ever increasing demand of higher performance, lower cost and thinner end user devices like smartphones require intense developments and innovation in all areas of the electronic component design including the substrate and chip packaging. Latest manufacturing technologies in both areas like fan-out wafer level packaging and advanced substrates are constantly emerging and promise to be a critical piece to meet these requirements. As a consequence both areas are currently merging while creating a new application segment. This segment combines the request of small feature sizes with the manufacturability on large scale substrates. Obviously many of the traditional process technologies like plating and available equipment cannot be easily adopted and need certain developments, adaptions and improvements. In this respect, a key challenge in the area of electrolytic metal deposition is the combination of various challenging requirements: creation of feature sizes down to 2μm L/S with heterogeneous feature density on large substrates up to 600mm at excellent metal thickness uniformity and high plating speed. The paper presents latest studies and conclusions in critical performance areas of the plating process such as electrolyte fluid dynamics, impact of anode design, pulse reverse rectification and newly designed electrolytes. Finally latest test results of optimized process conditions will be discussed in detail with different feature sizes providing data of within die and within substrate uniformity. All tests are done on panel level, both organic and glass substrates. The latest findings and achievements of the discussed panel based plating process technology will support the industry to develop panel based packaging processes that meet both technical and commercial requirements.

2004 ◽  
Vol 843 ◽  
Author(s):  
J. Yu ◽  
J. J. McMahon ◽  
J.-Q. Lu ◽  
R. J. Gutmann

ABSTRACTWafer level monolithic three-dimensional (3D) integration is an emerging technology to realize enhanced performance and functionality with reduced form-factor and manufacturing cost. The cornerstone for this 3D processing technology is full-wafer bonding under back-end-of-the-line (BEOL) compatible process conditions. For the first time to our knowledge, we demonstrate nearly void-free 200 mm wafer-to-wafer bonding with an ultra-thin Ti adhesive coating, annealed at BEOL-compatible temperature (400 °C) in vacuum with external pressure applied. Mechanical integrity test showed that bonded wafer pair survived after a stringent three-step thinning process (grinding/polishing/wet-etching) with complete removal of top Si wafer, while allowing optical inspection of bonding interface. Mechanisms contributing to the strong bonding at Ti/Si interface are briefly discussed.


2003 ◽  
Vol 782 ◽  
Author(s):  
V. Dragoi ◽  
P. Lindner ◽  
T. Glinsner ◽  
M. Wimplinger ◽  
S. Farrens

ABSTRACTAnodic bonding is a powerful technique used in MEMS manufacturing. This process is applied mainly for building three-dimensional structures for microfluidic applications or for wafer level packaging. Process conditions will be evaluated in present paper. An experimental solution for bonding three wafers in one single process step (“triple-stack bonding”) will be introduced.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000212-000216
Author(s):  
M. Mehendale ◽  
R. Mair ◽  
J. Chen ◽  
J. Tan ◽  
J. Dai ◽  
...  

Abstract Fan out wafer level packaging (FO-WLP) is one of the fastest growing advanced packaging segments due to its versatility for a wide variety of applications. It's compatibility with large scale, low cost, ultra-thin and high-density packages has made it very attractive. Cu redistribution layer and multiple metal under bump metallization stack play critical role in the FO-WLP process especially with shrinking line/space size and increasing density. We previously discussed the adaptation of PULSE™ technology, with the integration of a visible reflectometer and high resolution camera as a comprehensive in-line metrology tool for the advanced packaging applications. In this paper, we present results from some recent work on enhancements to the configuration for measurements of very thick, rough RDL films. The modifications provided significant improvement (9×) to throughput while maintaining gage capable repeatability. Cross-section SEM measurements on 1μm RDL structures were used to validate the extendibility of the technique.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
Jakub Zdarta ◽  
Katarzyna Jankowska ◽  
Karolina Bachosz ◽  
Oliwia Degórska ◽  
Karolina Kaźmierczak ◽  
...  

Abstract Purpose of Review In the presented review, we have summarized recent achievements on the use of immobilized oxidoreductases for biodegradation of hazardous organic pollutants including mainly dyes, pharmaceuticals, phenols, and bisphenols. In order to facilitate process optimization and achievement of high removal rates, effect of various process conditions on biodegradation has been highlighted and discussed. Recent Findings Current reports clearly show that immobilized oxidoreductases are capable of efficient conversion of organic pollutants, usually reaching over 90% of removal rate. Further, immobilized enzymes showed great recyclability potential, allowing their reuse in numerous of catalytic cycles. Summary Collected data clearly indicates immobilized oxidoreductases as an efficient biocatalytic tools for removal of hazardous phenolic compounds, making them a promising option for future water purification. Data shows, however, that both immobilization and biodegradation conditions affect conversion efficiency; therefore, process optimization is required to achieve high removal rates. Nevertheless, we have demonstrated future trends and highlighted several issues that have to be solved in the near-future research, to facilitate large-scale application of the immobilized oxidoreductases in wastewater treatment.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiyun Heo ◽  
Jae-Yun Han ◽  
Soohyun Kim ◽  
Seongmin Yuk ◽  
Chanyong Choi ◽  
...  

Abstract The vanadium redox flow battery is considered one of the most promising candidates for use in large-scale energy storage systems. However, its commercialization has been hindered due to the high manufacturing cost of the vanadium electrolyte, which is currently prepared using a costly electrolysis method with limited productivity. In this work, we present a simpler method for chemical production of impurity-free V3.5+ electrolyte by utilizing formic acid as a reducing agent and Pt/C as a catalyst. With the catalytic reduction of V4+ electrolyte, a high quality V3.5+ electrolyte was successfully produced and excellent cell performance was achieved. Based on the result, a prototype catalytic reactor employing Pt/C-decorated carbon felt was designed, and high-speed, continuous production of V3.5+ electrolyte in this manner was demonstrated with the reactor. This invention offers a simple but practical strategy to reduce the production cost of V3.5+ electrolyte while retaining quality that is adequate for high-performance operations.


2009 ◽  
Vol 1 (1) ◽  
pp. 1527-1530
Author(s):  
S. Maus ◽  
U. Hansen ◽  
J. Leib ◽  
M. Töpper

Author(s):  
Jin Iwatsuki ◽  
Shinji Kubo ◽  
Seiji Kasahara ◽  
Nobuyuki Tanaka ◽  
Hiroki Noguchi ◽  
...  

The Japan Atomic Energy Agency (JAEA) is conducting research and development on nuclear hydrogen production using High Temperature Gas-cooled Reactor and thermochemical water-splitting Iodine-Sulfur (IS) process aiming to develop large-scale hydrogen production technology for “hydrogen energy system”. In this paper, the present status of R&D on IS process at JAEA is presented which focuses on examining integrity of such components as chemical reactors, separators, etc. Based on previous screening of materials of construction mainly from the viewpoint of corrosion resistance in the harsh process conditions of IS process, it was planned to fabricate the IS components and examine their integrity in the process environments. At present, among the components of IS process plant consisting of three chemical reaction sections, i.e., the Bunsen reaction section, the sulfuric acid decomposition section and the hydrogen iodide decomposition section, key components in the Bunsen reaction section was fabricated.


2014 ◽  
Vol 14 (2) ◽  
pp. 101
Author(s):  
Ahmad Fatih Fudhla

Ahmad Fatih FudhlaSystems Modeling Laboratory, Industrial Engineering Department, STT YPMRaya Ngelom 86, Taman, Sepanjang, Sidoarjo 61257, East Java, IndonesiaEmail: [email protected] keputusan dalam memilih desain pengembangan komponen Gear Transmission box (GTB) pada Traktor Tangan dilakukan dengan banyak kriteria. Berdasarkan diskusi Focus group dan brainstorming yang dilakukan oleh tim pengembangan produk, teridentifikasi tujuh kriteria yakni; Ketahanan material terhadap korosi, Kemampuan desain untuk diproses di lantai produksi, kemampuan desain dalam menahan beban operasi maksimum traktor tangan, pengaruh terhadap proses produksi komponen lainnya, biaya manufaktur, massa desain GTB, dan waktu proses. Kriteria tersebut dikelompokkan ke dalam kategori positif dan negative. Positif adalah kriteria yang nilainya semakin besar semakin baik, sedangkan negatif semakin kecil semakin baik. Terdapat tiga alternatif desain, yakni Desain Awal, Desain 1 dan Desain 2. Pemilihan dilakukan dengan metode Analytic Hierarchy Process (AHP). Evaluasi dilaksanakan terpisah untuk kedua kategori. Alternative terbaik adalah alternative yang memiliki nilai perbandingan terbesar antara nilai alternatif criteria positif dan negative.KataKunci: Analytical Hierarchy Process, Perbandingan Berpasangan, Perancangan dan Pengembangan Komponen ProdukABSTRACTDecision making on selection of hand tractor Gear Transmission Box (GTB) “Improvement Designs” is carried out according to many criteria. Based on the focus group and brainstorm performed by product-development teams, seven criteria are finally identified as follows; Material corrosion resistance, Manufacturability, The ability of the design to withstand the maximum load operation, influence on the other components process, manufacturing cost, mass of GTB design, and processing time. Those criteria are categorized into positive and negative characteristics. Positive criteria indicate that score which is the greater the better, by contrast, negative is the less the better. There are 3 alternatives namely Initial Design, Design 1 and Design 2. The selection is performed based on Analytic Hierarchy Process (AHP) Method. The evaluation is analyzed separately according to each category. The best alternative is the one which has the highest ratio between positive and negative criteria.Key Words: Analytical Hierarchy Process, Pair-wise Comparison, Component Design and Development


Sign in / Sign up

Export Citation Format

Share Document