Fabrication of Oxide Ceramics Dendrites for Porous Electrodes by Using Stereolithography

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000152-000157 ◽  
Author(s):  
Satoko Tasaki ◽  
Naoki Komori ◽  
Soshu Kirihara

Porous oxide ceramics such as zinc oxide are applied for dye sensitized solar cell. This device requires consideration of high surface area, mechanical strengths and porous networks. Thus, we focused on the dendrite structures constructed from micrometer order rods with coordination numbers of 4, 8, and 12. There perfectly controlled structures were fabricated by stereolithography. Variations of the aspect ratios (lattice length to diameter ratios) were adjusted to control the porosity in the range 50–80 vol. % by using computer graphic software. The dendrite models sliced into a series of cross sectional patterns with uniform thickness by using a stereolithographic file format convertor. These numerical data were transferred into the micro processing equipment. High viscosity slurry material was prepared by mixing oxide ceramic powder and photosensitive acrylic resin. This slurry was spread on a flat stage and smoothed. An ultraviolet laser beam was exposed over the deposited layer to create cross-sectional planes. Through layer-by-layer processes, solid components were fabricated. These precursors were dewaxed at 600°C for 2 h at a heating rate of 1.0°C/min and sintered at 1400°C for 2 h at a heating rate of 5.0°C/min in air. The oxide ceramics microstructure was observed using a scanning electron microscope.

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000193-000198
Author(s):  
Satoko Tasaki ◽  
Soshu Kirihara

Zinc oxide ceramics exhibit various semiconductor properties through optimized elements or materials doping. The elements doping of aluminum or gallium can control the electric conductivity, and composites doping of indium and rare earth such as yttrium can increase the thermoelectric conversion efficiency. In this investigation, dendritic lattice structures of the zinc oxide semiconductors with periodically ordered arrangements or self similar patterns were fabricated successfully to increase the surfaces area and porosity values by using micro patterning stereolithography of a computer aided design and manufacturing. These semiconductor dendrites with penetrable paths and extensive interfaces will be used for fluid and heat flow receptors and applied to the novel sensor devices and energy generators. The dendritic lattice models sliced into a series of cross sectional patterns with uniform thickness by using a stereolithographic file format convertor. These numerical data were transferred into the micro processing equipment. High viscosity slurry material was prepared through the mixing of photo sensitive acrylic resin and the zinc oxide particle at 30 % in volume fraction. The slurry was supplied on a flat substrate with 8 μm in layer thickness by using a mechanical knife edge. The cross sectional image was exposed on the slurry surface by using digital micro mirror devices. Through the layer by layer processes, the solid component was obtained with micrometer order part accuracies. The dense ceramic sample was purchase after de-waxing and sintering process.


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


2021 ◽  
Vol 19 (2) ◽  
pp. 77-82
Author(s):  
Fadhil K. Farhan ◽  
Aws Abbas Hussein ◽  
Ali Q. Tuama

The liquid and mechanical mixing method was used in addition to ultrasound technology to prepare samples according to standard conditions. The percentage of cementing with ceramic powder was adopted from 1% to 4% as a weight ratio, and by using mixing drivers, nanocomposites were prepared depending on the theoretical density of the components. The velvet density was measured using Archimedes' method, and the results showed a successive improvement and increase in density with the weight ratio of addition. The results of the particulate hardness test showed a significant improvement in the results of the prepared nanostructures compared to the base sample (pure epoxy). With regard to the properties of wear resistance (wear modulus) using the screw-on-disk method, the cemented samples showed a higher wear resistance compared to the base sample. The results were interpreted based on the values of density and hardness in addition to the properties possessed by the ceramic powder of high surface area and average granular size of 32 nanometers through scanning electron microscopy. In this work, nanostructures based on (a polymer) supported with nanoscale zirconium dioxide powder were developed.


1990 ◽  
Vol 5 (1-6) ◽  
pp. 663-665
Author(s):  
K. Chhor ◽  
J. F. Bocquet ◽  
M. Barj ◽  
C. Pommier

1992 ◽  
Vol 296 ◽  
Author(s):  
J. J. Kingsley ◽  
L. R. Pederson

AbstractCombustion of a proper combination of an oxidizer and a fuel can produce the exothermicity required for the simultaneous synthesis of oxide ceramic powders. Oxidizers include metal nitrates, ammonium nitrate, and ammonium perchlorate, while urea, carbohydrazide, glycine and others have been used successfully as fuels. Combustion methods are particularly well-suited to producing multicomponent metal oxides, yielding compositionally homogeneous, fine particles with low impurity content. Organic fuels, particularly those containing nitrogen, also serve as a complexant in the precursor, which inhibits inhomogeneous precipitation from occurring prior to combustion. The exothermic redox decomposition of these oxidizer-fuel mixtures is initiated at low temperatures, usually <250°C. Properties of the products are influenced by the nature of the fuel and the oxidizer/fuel ratio. Many technologically important oxide ceramics have been produced by these methods.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000001-000005
Author(s):  
Soshu Kirihara

Abstract In a stereolithographic additive manufacturing (AM), two dimensional (2D) cross sectional patterns were created through photo polymerization by ultraviolet laser drawing on spread resin paste including ceramic nanoparticles, and three dimensional (3D) composite models were sterically printed by layer lamination through chemical bonding. An automatic collimeter was equipped with the laser scanner to adjust beam diameter. Fine or coarse beams could realize high resolution or wide area drawings, respectively. Metal and ceramic bulky components including dendritic networks were geometrically built by using stereolithographic AM. Geometric patterns with periodic, self-similar, graded and fluctuated arrangements were created by computer aided design, manufacture and evaluation (CAD/CAM/CAE) for effective modulations of energy and material flows through dielectric lattices in photonic crystals, porous electrodes in fuel cells and biological scaffolds in artificial bones.


2019 ◽  
Vol 809 ◽  
pp. 140-147 ◽  
Author(s):  
Maike Böttcher ◽  
Daisy Nestler ◽  
Jonas Stiller ◽  
Lothar Kroll

Ceramic materials are suitable for use in the high temperature range. Oxide ceramics, in particular, have a high potential for long-term applications under thermal cycling and oxidising atmosphere. However, monolithic oxide ceramics are unsuitable for use in high-temperature technical applications because of their brittleness. Thin-walled, oxidation resistant, and high-temperature resistant materials can be developed by reinforcing oxide ceramics with ceramic fibres such as alumina fibres. The increase of the mechanical stability of the composites in comparison to the non-fibre reinforced material is of outstanding importance. Possible stresses or cracks can be derived along the fibre under mechanical stress or deformation. Components made of fibre-reinforced ceramic composites with oxide ceramic matrix (OCMC) are currently produced in manual and price-intensive processes for small series. Therefore, the manufacturing should be improved. The ceramic injection moulding (CIM) process is established in the production of monolithic oxide ceramics. This process is characterised by its excellent automation capability. In order to realise large scale production, the CIM-process should be transferred to the production of fibre-reinforced oxide ceramics. The CIM-process enables the production of complicated component shapes and contours without the need for complex mechanical post-treatment. This means that components with complex geometries can be manufactured in large quantities.To investigate the suitability of the injection moulding process for the production of OCMCs, two different feedstocks and alumina fibres (Nextel 610) were compounded in a laboratory-scale compounder. The fibre volume fractions were varied. In a laboratory-scale injection moulding device, microbending specimens were produced from the compounds obtained in this way. To characterise the test specimens, microstructure examinations and mechanical-static tests were done. It is shown that the injection moulding process is suitable for the production of fibre-reinforced oxide ceramics. The investigations show that the feedstocks used have potential for further research work and for future applications as material components for high-temperature applications in oxidising atmospheres.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Helina Fikre Tamiru ◽  
Yohana James Mashalla ◽  
Rezika Mohammed ◽  
Gloria Thupayagale Tshweneagae

Abstract Background Cutaneous leishmaniasis is one of the neglected tropical diseases in the Ethiopian highlands and studies on assessment of knowledge, attitude and practice of the community in endemic areas are scanty. The study aimed to assess the knowledge, attitude towards cutaneous leishmaniasis and treatment seeking practices in people living in the endemic highlands areas in the Northwest, Ethiopia and to provide evidence-based information to guide development of appropriate interventions to reduce the impact of cutaneous leishmaniasis on communities. Methods Quantitative cross-sectional study was conducted in cutaneous leishmaniasis endemic districts (woredas) using a semi structured questionnaire. Households were randomly selected according to probability proportional to size of households in each enumeration area. Systematic random sampling of eligible households was based on the number of households recorded during listing of households. Descriptive statistics was used to describe numerical data, organise and summarise the data in a manner that gave meaning to the numerical form. Frequency tables were used to show descriptive analysis and regression analysis was used to determine correlation between variables. Results Majority of respondents 321(78.7%) lived in rural areas, age ranged between 18 and 85 years and most were farmers. Illiteracy was high (47.6%) among respondents and majority 358(87.8%) had seen patients with CL. Less than quarter (21.6%) had heard about sand flies and knowledge on the peak transmission period was low (46.3%). About 192 (47.1%) of the respondents indicated disfiguring lesions were the major clinical presentations, less than half 55(27.5%) of urban residents believed CL was treatable compared to 145(72.5%) of rural residents (P < 0.001). Traditional medicines were indicated as best treatment option by 209(51.2%) compared to 114(27.9%) for modern treatment. Major factors influencing treatment options included accessibility to treatment facilities, distance and short duration of treatment. Participants expressed negative experiential attitude and perceived control towards modern treatment because of inaccessibility and distance from where modern treatment is provided. Conclusion Priority should be given to primary prevention and appropriate awareness campaigns on lesion recognition. Information on modern treatment should be intensified.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 105-109 ◽  
Author(s):  
Sourabh K. Saha ◽  
Dien Wang ◽  
Vu H. Nguyen ◽  
Yina Chang ◽  
James S. Oakdale ◽  
...  

High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)–based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.


Sign in / Sign up

Export Citation Format

Share Document