Antimicrobial Resistance of Bacterial Flora Associated with Bovine Products in South Africa

1999 ◽  
Vol 62 (6) ◽  
pp. 615-618 ◽  
Author(s):  
THUREYAH MANIE ◽  
VOLKER S. BRÖZEL ◽  
WALTER J. VEITH ◽  
PIETER A. GOUWS

The administration of subtherapeutic doses of antibiotics to livestock introduces selective pressures that may lead to the emergence and dissemination of resistant bacteria. This study determined the antibiotic-resistance spectra of the microbial flora found on freshly slaughtered and retail beef and in unpasteurized and pasteurized packaged milk. Staphylococci, Enterobacteriaceae, and isolates from total aerobic plate counts were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline, and gentamicin using the disc diffusion susceptibility test and resistance to penicillin was determined by using oxacillin. A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by isolates from abattoir samples. The incidence of multiple antibiotic resistance (MAR) pathogenic bacteria is also higher in the abattoir. Resistance genes lost because of lack of selective pressure or resistant flora being replaced by more sensitive flora during processing is the reason for the lower incidence of MAR pathogenic bacteria among retail samples. These resistant bacteria can be transferred to humans through the consumption of rare or raw beef and unpasteurized milk, thus rendering the resultant food-related infections difficult to treat. The present findings clearly demonstrate that antibiotic-resistant bacteria in beef and milk pose a serious problem in South Africa.


2021 ◽  
Vol 6 (3) ◽  
pp. 110
Author(s):  
Godfred Saviour Kudjo Azaglo ◽  
Mohammed Khogali ◽  
Katrina Hann ◽  
John Alexis Pwamang ◽  
Emmanuel Appoh ◽  
...  

Inappropriate use of antibiotics has led to the presence of antibiotic-resistant bacteria in ambient air. There is no published information about the presence and resistance profiles of bacteria in ambient air in Ghana. We evaluated the presence and antibiotic resistance profiles of selected bacterial, environmental and meteorological characteristics and airborne bacterial counts in 12 active air quality monitoring sites (seven roadside, two industrial and three residential) in Accra in February 2020. Roadside sites had the highest median temperature, relative humidity, wind speed and PM10 concentrations, and median airborne bacterial counts in roadside sites (115,000 CFU/m3) were higher compared with industrial (35,150 CFU/m3) and residential sites (1210 CFU/m3). Bacillus species were isolated in all samples and none were antibiotic resistant. There were, however, Pseudomonas aeruginosa, Escherichia coli, Pseudomonas species, non-hemolytic Streptococci, Coliforms and Staphylococci species, of which six (50%) showed mono-resistance or multidrug resistance to four antibiotics (penicillin, ampicillin, ciprofloxacin and ceftriaxone). There was a positive correlation between PM10 concentrations and airborne bacterial counts (rs = 0.72), but no correlations were found between PM10 concentrations and the pathogenic bacteria nor their antibiotic resistance. We call for the expansion of surveillance of ambient air to other cities of Ghana to obtain nationally representative information.



2007 ◽  
Vol 53 (7) ◽  
pp. 919-924 ◽  
Author(s):  
Kavitha Boinapally ◽  
Xiuping Jiang

The objective of this study was to assess and differentiate wild-caught South Carolina (SC) shrimps from imported shrimps on the basis of microbiological analysis. Seven wild-caught SC shrimp and 13 farm-raised imported shrimp samples were analyzed. Total plate counts from wild-caught shrimp samples ranged from 4.3 to 7.0 log10 CFU/g, whereas counts from imported shrimp samples ranged from 3.2 to 5.7 log10 CFU/g. There was no difference (P > 0.05) between total bacterial counts of wild-caught SC shrimp and farm-raised imported shrimp. However, the percentages of bacteria with reduced susceptibility towards ceftriaxone and tetracycline were higher (P < 0.05) for farm-raised shrimp than for wild-caught samples. Salmonella spp. detected only in one farm-raised sample was resistant to ampicillin, ceftriaxone, gentamicin, streptomycin, and trimethoprim. Vibrio vulnificus was detected in both wild-caught and farm-raised shrimp samples; however, only the isolate from farm-raised shrimp was resistant to nalidixic acid and trimethoprim. Escherichia coli detected in one wild-caught sample was resistant to ampicillin. Both Listeria spp. and Salmonella spp. were absent with wild-caught SC samples. Therefore, the presence of more ceftriaxone- and tetracycline-resistant bacteria and the observed antimicrobial resistance phenotypes of isolates from the imported shrimp may reflect the possible use of antibiotics in raising shrimp in those countries.



2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Susanne Schjørring ◽  
Karen A. Krogfelt

We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic resistant bacteria. The human gastrointestinal tract is a massive reservoir of bacteria with a potential for both receiving and transferring antibiotic resistance genes. The increased use of fermented food products and probiotics, as food supplements and health promoting products containing massive amounts of bacteria acting as either donors and/or recipients of antibiotic resistance genes in the human GI tract, also contributes to the emergence of antibiotic resistant strains. This paper deals with the assessment of antibiotic resistance gene transfer occurring in the gut.



Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 618
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Although limited, studies have found conflicting results on whether co-grazing results in significant antibiotic resistance transfer between species. This type of farming system can act as a vector in the geographical spread of antibiotic-resistant bacteria in the environment. The aim of this study was to determine the antibiotic-resistant patterns between co-grazing and non-co-grazing livestock and wildlife species in South Africa. Escherichia coli was isolated from the faeces of various wildlife and livestock species from two farms in South Africa and was tested for antibiotic resistance using the Kirby–Bauer disk diffusion method against chloramphenicol, nalidixic acid, ampicillin, streptomycin, sulphafurazole, and tetracycline. A selection of some common antibiotic-resistant genes (blaCMY, aadA1, sul1, sul2, tetA, and tetB) were detected using PCR. The E. coli isolates from wildlife and livestock that co-grazed showed no significant differences in antibiotic resistance patterns. However, this was not the case for tetracycline resistance as the livestock isolates were significantly more resistant than the co-grazing wildlife isolates. The E. coli isolates from the non-co-grazing livestock and wildlife had significant differences in their antibiotic susceptibility patterns; the wildlife E. coli isolates were significantly more resistant to sulphafurazole and streptomycin than the livestock isolates, whilst those isolated from the cattle were significantly more resistant to ampicillin than the wildlife and sheep isolates. The results of this study suggest that there could be an exchange of antibiotic-resistant bacteria and genes between livestock and wildlife that co-graze.



2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.



2010 ◽  
Vol 56 (7) ◽  
pp. 558-568
Author(s):  
George J. Sorger ◽  
James S. Quinn

Sewage, a major source of bacterial contamination of the environment, can be an important health hazard. The presence of antibiotic-resistant bacteria in sewage can exacerbate this problem. The sources of antibiotic-resistant bacteria in sewage are, for this reason, worth identifying and addressing. The bacterial flora in the effluent of the Woodward Avenue Wastewater Treatment Plant (WAWTP) in Hamilton, Ontario, Canada, contains many antibiotic-resistant coliforms. Here we ask, are the antibiotic resistance genes in the coliforms in the effluent of WAWTP descended from a recent common ancestor strain? If so, the source could be identified and eliminated. If, on the other hand, the antibiotic resistance genes in the bacterial flora of the WAWTP have more than one origin, identification and elimination of the source(s) could be difficult. There was considerable diversity of antibiotic resistance patterns and antibiotic resistance genes among the effluent and influent coliform isolates of the WAWTP, suggesting multiple genetic ancestry. The patterns of horizontal transmissibility and sequence differences in the genes tetA and tetE among these coliform isolates also suggest that they have no one predominant ancestral strain. Using the same logic, the evidence presented here is not compatible with a single ancestral origin of the antibiotic resistance genes in the isolates described herein.



2021 ◽  
Author(s):  
Matilde Costa Fernandes ◽  
Miguel L. Grilo ◽  
Eva Cunha ◽  
Carla Carneiro ◽  
Luís Tavares ◽  
...  

Abstract Background: Several studies detected high levels of antibiotic-resistance in loggerhead sea turtles (Caretta caretta) and pointed this species as prime reservoirs of antibiotic-resistant bacteria and carriers of potentially pathogenic bacteria. This study aimed to characterize, for the first time, the Gram-negative aerobic microbiota of the Cape Verdean loggerhead subpopulation. Cloacal, oral and egg content swab samples from 33 nesting loggerheads (n = 99) of the Island of Maio were analysed regarding the presence of Gram-negative bacteria and their antibiotic resistance and virulence profiles. Results: Shewanella putrefaciens (27.78%), Morganella morganii (22.22%) and Vibrio alginolyticus (22.22%) were the most prevalent species isolated from the animals under study. A low incidence of antibiotic-resistant bacteria (26%) was detected, and no multidrug-resistant isolates were identified. Non-Enterobacteriaceae isolates presented the most complex virulence profiles, revealing the ability to produce hemolysins (100%), DNases (89%), lipases (79%), proteases (53%), lecithinases (21%), gelatinases (16%), and also biofilms (74%). Moreover, higher virulence indices were obtained for turtles with high parasite intensities compared with apparently healthy animals, and a positive correlation between antibiotic resistance and virulence was observed. Conclusions: Results suggest that this loggerhead population may be less exposed to antimicrobial compounds, probably due to the low anthropogenic impact observed in both their nesting (the Island of Maio) and foraging sites. Nevertheless, the presence of potentially pathogenic bacteria expressing virulence factors may threat both sea turtles’ and humans’ health.



2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Maria Belen Sathicq ◽  
Tomasa Sbaffi ◽  
Giulia Borgomaneiro ◽  
Andrea Di Cesare ◽  
Raffaella Sabatino

The World Health Organization considers antibiotic resistance as one of the main threats to human and other animals' health. Despite the measures used to limit the spread of antibiotic resistance, the efforts made are not enough to tackle this problem. Thus, it has become important to understand how bacteria acquire and transmit antibiotic resistant genes (ARGs), in particular in the environment, given the close connection between the latter and human and animal health, as defined by the One-Health concept. Aquatic ecosystems are often strongly impacted by anthropogenic activities, making them a source for ARGs and antibiotic resistant bacteria (ARB). Although freshwater meiofauna have been the object of active research, few studies have focused on the relationship between the spread of antibiotic resistance and these organisms. In this review, we investigated freshwater meiofauna as carriers of resistances since they play a central role in the aquatic environments and can harbor human and animal potential pathogens. We assessed if these animals could contribute to the spread of ARGs and of potentially pathogenic bacteria. Only four taxa (Rotifera, Chironomidae, Cladocera, Copepoda) were found to be the subject of studies focused on antibiotic resistance. The studies we analyzed, although with some limitations, demonstrated that ARGs and ARB can be found in these animals, and several of them showed the presence of potentially pathogenic bacteria for humans and animals within their microbiome. Thus, meiofauna can be considered a source and a reservoir, even if neglected, of ARGs and ARB for the freshwater environments. However, further studies are needed to evaluate the impact of the meiofauna on the spread and persistence of antibiotic resistance in these ecosystems.



2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics



Sign in / Sign up

Export Citation Format

Share Document