scholarly journals The effects of prolonged oral administration of the disinfectant calcium hypochlorite in Nigerian commercial cockerels

Author(s):  
Temitayo O. Iji ◽  
Ademola A. Oyagbemi ◽  
Odunayo I. Azeez

This study was designed to investigate the effects of prolonged oral administration of calcium hypochlorite in the drinking water of commercial cockerels. It was carried out in order to ascertain probable toxicity associated with prolonged exposure to calcium hypochlorite. Thirty-two healthy birds were used; they were grouped into four groups of eight. Group 1, which served as the control, received 10 mL/kg body weight of physiological saline. Groups 2, 3 and 4 received 0.0375 g, 0.375 g and 0.75 g of calcium hypochlorite per 10 litres of drinking water for six weeks respectively. Six weeks after the administration of calcium hypochlorite, blood was collected from the jugular vein to assess liver function, lipid profiles and for markers of oxidative stress. The results revealed a significant (p < 0.05) increase in alanine aminotransferase activity in a dose-dependent manner when compared with the control. Also, there was a significant (p < 0.05) increase in aspartate aminotransferase and alkaline phosphatase activity. Similarly, there was a significant (p < 0.05) increase in total cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein levels compared with the control. There was a significant increase in malondialdehyde and hydrogen peroxide generation with a concomitant significant (p < 0.05) decrease in serum glutathione level in a dose-dependent manner when compared with the control. In this study, calcium hypochloriteinduced hepatic damage via oxidative stress and decrease in antioxidant defense system was found. Therefore, prolonged exposure of chickens to calcium hypochlorite is potentially harmful.

2017 ◽  
Vol 1 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Cecilia Virginia Gheran ◽  
Sorina Nicoleta Voicu ◽  
Guillaume Rigaux ◽  
Maite Callewaert ◽  
Francoise Chuburu ◽  
...  

Abstract Gadolinium nanoparticles (GdNPs) are potential agents for MRI of lymph nodes. The aim of this study was to evaluate the in vitro effects of 1 μM, 2.5 μM and 5 μM of GdDOTA⊂CS-TPP/HA and GdDOTP⊂CS-TPP/HA NPs on A20 lymphocyte cells exposed for 6 and 24 hours. The total cellular biomass (SRB), lactate dehydrogenase activity (LDH) and oxidative stress parameters, such as reactive oxygen species generation (ROS), reduced glutathione (GSH), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) were analyzed by spectrophotometric and fluorimetric methods. After cells exposure to 1 μM, 2.5 μM and 5 μM of GdDOTP⊂CS-TPP/HA NPs their viability decreased in a time- and dose-dependent manner, whereas for GdDOTA⊂CS-TPP/HA no significant changes were noticed. Both NPs formulations in doses of 1 μM, 2.5 μM, 5 μM did not affect the plasma membrane at each time point tested. The levels of ROS, MDA and AOPP increased proportionally with the concentration and exposure time. GSH concentration decreased significantly for all doses of both NPs tested. Taken together our data suggest that, GdDOTP⊂CS-TPP/HA and GdDOTA⊂CS-TPP/HA NPs induced oxidative stress in A20 lymphocyte cells which was counteracted by the cells antioxidant defense system to a certain extend.


2019 ◽  
Vol 38 (3) ◽  
pp. 202-208 ◽  
Author(s):  
Fatemeh Khademi ◽  
Hamidreza Totonchi ◽  
Neda Mohammadi ◽  
Razieh Zare ◽  
Fatemeh Zal

Nicotine is a major component of tobacco plants and is responsible for the development of reproductive problems in smokers. Nicotine has been recognized to result in oxidative stress by inducing the generation of reactive oxygen species (ROS) in some parts of female reproductive system, but the effect of nicotine on endometrium that plays an important role in reproductive biology stays unexplored. The aim of this work was to clarify the direct effects of nicotine administration on the antioxidant defense system and lipid peroxidation in human endometrial cells. Human endometrial stromal primary cells were treated with nicotine (0, 10−11, 10−8, and 10−6 M) for 24 hours. On nicotine administration, the endometrial cells were associated with a decrease in antioxidant defense markers such as Glutathione (GSH) level, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) enzymes activity and higher levels of malondialdehyde (MDA) in a dose-dependent manner when compared to the control. We concluded that nicotine as a pro-oxidant affects the oxidative state of the endometrial cells.


Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


2017 ◽  
Vol 43 (4) ◽  
pp. 1449-1459 ◽  
Author(s):  
Renata A. C. Silva ◽  
Andréa F. Gonçalves ◽  
Priscila P. dos Santos ◽  
Bruna Rafacho ◽  
Renan F. T. Claro ◽  
...  

Background/Aims: This study aimed to discern whether the cardiac alterations caused by retinoic acid (RA) in normal adult rats are physiologic or pathologic. Methods and Results: Wistar rats were assigned into four groups: control animals (C, n = 20) received a standard rat chow; animals fed a diet supplemented with 0.3 mg/kg/day all-trans-RA (AR1, n = 20); animals fed a diet supplemented with 5 mg/kg/day all-trans-RA (AR2, n = 20); and animals fed a diet supplemented with 10 mg/kg/day all-trans-RA (AR3, n = 20). After 2 months, the animals were submitted to echocardiogram, isolated heart study, histology, energy metabolism status, oxidative stress condition, and the signaling pathway involved in the cardiac remodeling induced by RA. RA increased myocyte cross-sectional area in a dose-dependent manner. The treatment did not change the morphological and functional variables, assessed by echocardiogram and isolated heart study. In contrast, RA changed catalases, superoxide dismutase, and glutathione peroxidases and was associated with increased values of lipid hydroperoxide, suggesting oxidative stress. RA also reduced citrate synthase, enzymatic mitochondrial complex II, ATP synthase, and enzymes of fatty acid metabolism and was associated with increased enzymes involved in glucose use. In addition, RA increased JNK 1/2 expression, without changes in TGF-β, PI3K, AKT, NFκB, S6K, and ERK. Conclusion: In normal rats, RA induces cardiac hypertrophy in a dose-dependent manner. The non-participation of the PI3K/Akt pathway, associated with the participation of the JNK pathway, oxidative stress, and changes in energy metabolism, suggests that cardiac remodeling induced by RA supplementation is deleterious.


1998 ◽  
Vol 336 (2) ◽  
pp. 381-386 ◽  
Author(s):  
Lothar GORETZKI ◽  
Barbara M. MUELLER

The low-density-lipoprotein-receptor-related protein (LRP) binds and internalizes numerous ligands, including lipoproteins, proteinase–inhibitor complexes and others. We have shown previously that LRP-mediated ligand internalization is dependent on cAMP-dependent protein kinase (PKA) activity. Here, we investigated whether ligation of LRP increases the intracellular cAMP level and PKA activity via a stimulatory GTP-binding protein. Treatment of LRP-expressing cell lines with the LRP ligands lactoferrin or urokinase-type plasminogen activator caused a significant elevation in cAMP and stimulated PKA activity in a dose-dependent manner. Addition of the 39 kDa receptor-associated protein (RAP), an antagonist for ligand interactions with LRP, blocked the lactoferrin-induced increase in PKA activity, demonstrating a requirement for ligand binding to LRP. Incubation of cell membrane fractions with lactoferrin increased GTPase activity in a time- and dose-dependent manner, and treatment with LRP ligands suppressed cholera-toxin-mediated ADP-ribosylation of the Gsα subunit of a heterotrimeric G-protein. Affinity precipitation of LRP with RAP resulted in co-precipitation of two isoforms of Gsα from detergent extracts. We thus conclude that LRP is a signalling receptor that associates directly with a stimulatory heterotrimeric G-protein and activates a downstream PKA-dependent pathway.


2021 ◽  
Author(s):  
Ahmed M Hamdan ◽  
Zuhair M. Mohammedsaleh ◽  
Aalaa Aboelnour ◽  
Sherif M.H. Elkhannishi

Abstract PurposeThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. The principal objective of our research is to explain the ameliorating effect of L-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs. MethodsWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered ISMN. Afterwards, we evaluated the role of L-ascorbic acid against these biochemical changes. ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in myocardium muscles in a dose dependent manner. Meanwhile, such exposure caused decline in the enzymatic effect of superoxide dismutase (SOD), glutathione (GSH) and catalase activity (CAT) accompanied with a decrease of in the level of mitochondrial oxidative stress marker (nrf2) in myocardium muscles and decrease in the serum iron and total iron binding capacity (TIBC) in a dose dependent manner. Concomitant treatment with L-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to generation of reactive oxygen species. Using vitamin C can effectively ameliorate such intoxication to overcome the nitrate tolerance.


2020 ◽  
Vol 84 (2) ◽  
Author(s):  
Wafa Trabelsi ◽  
Chaima Fouzai ◽  
Imene Chetoui ◽  
Safa Bejaoui ◽  
Khaoula Telahigue ◽  
...  

Acrylamide (ACR) is among the most deleterious pollutants in the environment and presents a serious risk to humans and ecosystems. The purpose of this study was to assess its effects when administered at different concentrations (5, 10 and 20 mg L–1) to evaluate antioxidant status in the gills of Mactra stultorum. Our results showed, after five days of treat­ment, an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), reduced glutathione (GSH), ascorbic acid (Vit C) and metallothionein (MDA) levels in gills of treated clams compared with controls. Moreover, an increase in superoxide dismutase (SOD) and a significant decrease in glutathione peroxidase (GPx) activities were also observed. Acrylamide induced neurotoxicity, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Overall, our results indicated that oxidative stress may be considered one of the mechanisms behind acrylamide toxicity in bivalves, although the subject requires more research.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hong-feng Zhang ◽  
Jia-hong Wang ◽  
Yan-li Wang ◽  
Cheng Gao ◽  
Yan-ting Gu ◽  
...  

Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg-1·d-1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.


2008 ◽  
Vol 27 (4) ◽  
pp. 341-346 ◽  
Author(s):  
EA Soria ◽  
ME Goleniowski ◽  
JJ Cantero ◽  
GA Bongiovanni

Chronic toxicity of arsenic resulting from drinking water is a health problem encountered in humans, especially in South America and Asia, where a correlation between oxidative stress, tumor promotion, and arsenic exposure has been observed. Differential solvent extraction (petroleum ether (PE); dichloromethane (DCM); methanol (OL) and water (W)) was performed to compare the protective (antioxidant) activity of five Argentinian medicinal plants on arsenite-induced oxidative stress in Vero cells, assayed by hydroperoxide measurement. The results were analyzed using ANOVA followed by the LSD Fisher test. The data showed that arsenite was a pro-oxidant agent which acts in a time–dose-dependent manner. Extracts from Eupatorium buniifolium (PE), Lantana grisebachii (PE, W), Mandevilla pentlandiana (PE, W), and Sebastiania commersoniana (DCM, OL, W) prevented the formation of both aqueous and lipid hydroperoxides, but Heterothalamus alienus only impeded lipid ones. Therefore, antioxidant extracts are potentially beneficial and may have a protective activity against arsenite-induced renal injury. Among these, the aqueous extract of L. grisebachii may represent the most suitable preparation for humans since the traditional usage of this plant in popular medicine is through consumption of tea.


2018 ◽  
Vol 293 (47) ◽  
pp. 18242-18269 ◽  
Author(s):  
Kelsey Murphy ◽  
Killian Llewellyn ◽  
Samuel Wakser ◽  
Josef Pontasch ◽  
Natasha Samanich ◽  
...  

Oxidative stress triggers and exacerbates neurodegeneration in Alzheimer's disease (AD). Various antioxidants reduce oxidative stress, but these agents have little efficacy due to poor blood–brain barrier (BBB) permeability. Additionally, single-modal antioxidants are easily overwhelmed by global oxidative stress. Activating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) and its downstream antioxidant system are considered very effective for reducing global oxidative stress. Thus far, only a few BBB-permeable agents activate the Nrf2-dependent antioxidant system. Here, we discovered a BBB-bypassing Nrf2-activating polysaccharide that may attenuate AD pathogenesis. Mini-GAGR, a 0.7-kDa cleavage product of low-acyl gellan gum, increased the levels and activities of Nrf2-dependent antioxidant enzymes, decreased reactive oxygen species (ROS) under oxidative stress in mouse cortical neurons, and robustly protected mitochondria from oxidative insults. Moreover, mini-GAGR increased the nuclear localization and transcriptional activity of Nrf2 similarly to known Nrf2 activators. Mechanistically, mini-GAGR increased the dissociation of Nrf2 from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), and induced phosphorylation and nuclear translocation of Nrf2 in a protein kinase C (PKC)- and fibroblast growth factor receptor (FGFR1)-dependent manner. Finally, 20-day intranasal treatment of 3xTg-AD mice with 100 nmol of mini-GAGR increased nuclear p-Nrf2 and growth-associated protein 43 (GAP43) levels in hippocampal neurons, reduced p-tau and β-amyloid (Aβ) peptide–stained neurons, and improved memory. The BBB-bypassing Nrf2-activating polysaccharide reported here may be effective in reducing oxidative stress and neurodegeneration in AD.


Sign in / Sign up

Export Citation Format

Share Document