scholarly journals Characterization of controlled landfill leachate from the city of Guaratinguetá - SP, Brazil

Author(s):  
André Luis de Castro Peixoto ◽  
Rodrigo Fernando dos Santos Salazar ◽  
Jayne Carlos de Souza Barboza ◽  
Hélcio José Izário Filho

This research evaluated the physicochemical parameters of a leachate sample from a controlled landfill in the city of Guaratinguetá-SP. The evaluation was conducted using spectrometric and spectrophotometric methods in order to assess the formation of persistent compounds. The selection of parameters was based on the CETESB Article 18 and CONAMA 357/05 Article 34, as well as organic characterization methods, such as FTIR, NMR (1H-NMR, 13C-NMR and APT), GC-MS, molar mass distribution and elemental analysis (CHN). Chemical and physical stability were also verified. The ammoniacal nitrogen concentration is 20 times greater than tolerance limit established by law (20 mg L-1). The Ba and Ni presented concentrations above those permitted by the legislation (CETESB Article 18 and CONAMA 357/05 Article 34). Those values of chemical oxygen demand (COD) and total organic carbon (TOC) were 1013 mg L-1 and 286 mg L-1, respectively. It was not possible to determine the biochemical oxygen demand (BOD) of slurry sample. In this sense, the biodegradability parameter for the slurry studied was Non-Determinable (ND), indicating that the organic matter of the slurry studied is recalcitrant. Recalcitrant humic substances of landfill leachate the present low polydispersity. These refractory acids play a detached role in carrying pollutants in the environment with regard to carrying toxic metals and pesticides.  Finally, it was possible to verify that the humic acids’ complexing capacity indicates that hydroxyl and carboxyl groups may exist in larger quantities than the nitrogen and sulfur groups. Further, the high content of metals may indicate that the waste was not properly separated.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3240
Author(s):  
Jinfeng Jiang ◽  
Liang Ma ◽  
Lianjie Hao ◽  
Daoji Wu ◽  
Kai Wang

In order to achieve advanced nitrogen removal from landfill leachate without the addition of external carbon sources, a Sequencing Batch Reactor (SBR) and a Sequencing Biofilm Batch Reactor (SBBR) were proposed for the treatment of actual landfill leachate with ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentrations of 1000 ± 100 mg/L and 4000 ± 100 mg/L, respectively. The operating modes of both systems are anaerobic–aerobic–anoxic. After 110 days of start-up and biomass acclimation, the effluent COD and the total nitrogen (TN) of the two systems were 650 ± 50 mg/L and 20 ± 10 mg/L, respectively. The removal rates of COD and total nitrogen could reach around 85% and above 95%, respectively. Therefore, advanced nitrogen removal was implemented in landfill leachate without adding any carbon sources. After the two systems were acclimated, nitrogen removing cycles of SBR and SBBR were 24 h and 20 h, respectively. The nitrogen removing efficiency of SBBR was improved by 16.7% in comparison to SBR. In the typical cycle of the two groups of reactors, the nitrification time of the system was the same, which was 5.5 h, indicating that although the fiber filler occupied part of the reactor space, it had no significant impact on the nitrification performance of the system. At the end of aeration, the internal carbon source content of sludge of SBBR was equivalent to that of the SBR system. However, the total nitrogen concentration of SBBR was only 129 mg/L, which is 33.8% lower than that of SBR at 195 mg/L. The main reason was that biofilm enhanced the simultaneous nitrification and denitrification (SND) effect of the system.


2018 ◽  
Vol 8 (1) ◽  
pp. 124-131
Author(s):  
Paulo Sergio Scalize ◽  
Juliana Moraes Frazão

Abstract The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.


1992 ◽  
Vol 27 (2) ◽  
pp. 301-310
Author(s):  
Agnes G. Pulvermüller ◽  
Heidulf E. Müller

Abstract The survey of the ecological condition of eight lakes within the city limits of Freiburg included hydrochemical measurements and analyses (oxygen profiles, Secchi depth, pH, biochemical oxygen demand) together with biological parameters (chlorophyll a, phytoplanktonbiomass, Escherichia coli counts), as well as parasitic examinations. Only some of the investigated parameters are presented here. Seven of the eight lakes were found to be eutrophic. The process of eutrophication appears to be still in progress. One lake can be considered to be hypertrophic. Schistosome dermatitis was observed. The water quality in general was considered to be acceptable; suggestions to maintain or improve the water quality are made.


1978 ◽  
Vol 5 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Robert D. Cameron

The use of cheap, locally available peat as a treatment method for landfill leachate was investigated by passing leachate through plexiglass columns filled with an amorphous-granular peat. Preliminary adjustment of pH showed that reducing pH to 4.8 dramatically reduced adsorption. Increasing the pH to 8.4, metal removal was increased owing to filtration of precipitated metals. The best adsorption of metals occurred at the 'natural' pH of 7.1. Manganese was found to be the limiting pollutant. At the 0.05 mg/ℓ maximum acceptable manganese concentration 94% of the total metals were removed, requiring 159 kg of peat per 1000 ℓ of leachate.Resting the peat for 1 month did significantly increase removal capacity.Desorption of some contaminants occurred when water was percolated through the peat. The desorption test effluent was not toxic to fish although iron, lead and COD (chemical oxygen demand) exceeded acceptable values.Chemical pretreatment using lime and ferric chloride achieved significant iron, manganese and calcium removals. Chemical pretreatment followed by peat adsorption offered no advantage other than reducing toxicity to fish.Peat treatment alone was effective in reducing concentrations to a level that was non-toxic to fish.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amy Gaye ◽  
Tolla Ndiaye ◽  
Mouhamad Sy ◽  
Awa B. Deme ◽  
Alphonse B. Thiaw ◽  
...  

AbstractDengue virus is a major and rapidly growing public health concern in tropic and subtropic regions across the globe. In late 2018, Senegal experienced its largest dengue virus outbreak to date, covering several regions. However, little is known about the genetic diversity of dengue virus (DENV) in Senegal. Here we report complete viral genomes from 17 previously undetected DENV cases from the city of Thiès. In total we identified 19 cases of DENV in a cohort of 198 individuals with fever collected in October and November 2018. We detected 3 co-circulating serotypes; DENV 3 was the most frequent accounting for 11/17 sequences (65%), 4 (23%) were DENV2 and 2 (12%) were DENV1. Sequences were most similar to recent sequences from West Africa, suggesting ongoing local circulation of viral populations; however, detailed inference is limited by the scarcity of available genomic data. We did not find clear associations with reported clinical signs or symptoms, highlighting the importance of testing for diagnosing febrile diseases. Overall, these findings expand the known range of DENV in Senegal, and underscore the need for better genomic characterization of DENV in West Africa.


2019 ◽  
Vol 34 (4) ◽  
pp. 419-437 ◽  
Author(s):  
Roberto Rocco ◽  
Luciana Royer ◽  
Fábio Mariz Gonçalves

2007 ◽  
Vol 1047 ◽  
Author(s):  
Eleni Pavlidou ◽  
N. Civici ◽  
E. Caushi ◽  
L. Anastasiou ◽  
T. Zorba ◽  
...  

AbstractIn this paper are presented the studies of the paint materials and the technique used in 18th century wall paintings, originated from the orthodox church of St Athanasius, in the city of Maschopolis, a flourishing economical and cultural center, in Albania. The church was painted in 1745 by Konstantinos and Athanasios Zografi, and during the last years, restoration activities are being performed at the church. Samples that included plasters and pigments of different colors were collected from important points of the wall paintings. Additionally, as some parts of the wall-paintings were over-painted, the analysis was extended to the compositional characterization of these areas. The identification of the used materials was done by using complementary analytical methods such as Optical Microscopy, Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray fluorescence (TXRF).The presence of calcite in almost all the pigments is indicative for the use of the fresco technique at the studied areas, while the detection of gypsum and calcium oxalate, indicates an environmental degradation along with a biodegradation. Common pigments used in this area at 15-16th centuries, such as cinnabar, green earth, manganese oxide, carbon black and calcite were identified.


2021 ◽  
Vol 13 (6) ◽  
pp. 3272
Author(s):  
Paúl Carrión-Mero ◽  
Maribel Aguilar-Aguilar ◽  
Fernando Morante-Carballo ◽  
María José Domínguez-Cuesta ◽  
Cristhian Sánchez-Padilla ◽  
...  

In the last decade, in the mining district of Zaruma-Portovelo, there has been significant land subsidence related to uncontrolled mining activity. The purpose of this work was to carry out a surface and underground geomechanical characterization of a mining sector north of the city of Zaruma that allows the definition of potentially unstable areas susceptible to the mass movement. The methodology used consists of the following stages: (i) compilation of previous studies; (ii) surface and underground characterization of rocky material to establish its susceptibility to mass movement; (iii) interpretation of results; and (iv) proposal of action measures. Among the most relevant results, it stands out that 26.1% of the 23 stations characterized on the surface present conditions that vary from potentially unstable to unstable. In underground galleries, the studied mean values of the 17 stations indicate that the rock has a medium to good quality, representing a medium susceptibility to gallery destabilization. The results obtained for the surface areas (depths up to 50 m, where altered materials predominate) and the underground areas (depths > 50 m, where the alterations are specific) can be used to identify the areas with a more significant potential for instability. For both cases, it has been possible to define specific monitoring, control, and planning actions for sensitive areas.


2015 ◽  
Vol 5 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Simin Li ◽  
Yongkang Lv ◽  
Zhanmeng Liu

A novel inorganic–organic composite coagulant, poly-ferric-magnesium (PFM) polydimethyldiallylammonium chloride (PDMDAAC), was prepared using FeSO4, MgSO4 and PDMDAAC as raw materials and was introduced to treat landfill leachate. The coagulation performance of the new reagent was evaluated and compared with those of other coagulants. The new reagent was characterized in terms of the analysis of ferron-timed spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The coagulation mechanism was investigated by measuring the ζ-potential reduction and chemical oxygen demand removal at different dosages. Coagulation experiments revealed that the new reagent exhibited better coagulation performance compared with the simple PFM and the PFM + PDMDAAC. Ferron-timed spectroscopy showed that the new reagent exhibited increased effective polymer species concentration. XRD and FTIR spectroscopy showed that the new reagent was not a simple mechanical mixing of PFM and PDMDAAC, but a composite system with inorganic–organic complex interpenetration networks. The predominant coagulation mechanism of the new reagent was charge neutralization at low dosages, as well as adsorption bridging and co-precipitation netting at high dosages, when treating landfill leachate.


Sign in / Sign up

Export Citation Format

Share Document