scholarly journals Immunological Changes in Mesothelioma Patients and Their Experimental Detection

2008 ◽  
Vol 2 ◽  
pp. CCRPM.S577 ◽  
Author(s):  
Megumi Maeda ◽  
Yoshie Miura ◽  
Yasumitsu Nishimura ◽  
Shuko Murakami ◽  
Hiroaki Hayashi ◽  
...  

It is common knowledge that asbestos exposure causes asbestos-related diseases such as asbestosis, lung cancer and malignant mesothelioma (MM) not only in people who have handled asbestos in the work environment, but also in residents living near factories that handle asbestos. These facts have been an enormous medical and social problem in Japan since the summer of 2005. We focused on the immunological effects of asbestos and silica on the human immune system. In this brief review, we present immunological changes in patients with MM and outline their experimental detection. For example, there is over-expression of bcl-2 in CD4+ peripheral T-cells, high plasma concentrations of interleukin (IL)-10 and transforming growth factor (TGF)-β, and multiple over-representation of T cell receptor (TcR)-VB in peripheral CD3+ T-cells found in MM patients. We also detail an experimental long-term exposure T-cell model. Analysis of the immunological effects of asbestos may help our understanding of the biological effects of asbestos.

Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3829-3835 ◽  
Author(s):  
Yolonda L. Colson ◽  
Kenneth Christopher ◽  
Jonathan Glickman ◽  
Kendra N. Taylor ◽  
Renee Wright ◽  
...  

Graft-versus-host disease (GVHD) and failure of engraftment limit clinical bone marrow transplantation (BMT) to patients with closely matched donors. Engraftment failure of purified allogeneic hematopoietic stem cells (HSCs) has been decreased in various BMT models by including donor BM–derived CD8+/αβγδTCR- facilitating cells (FCs) or CD8+/αβTCR+ T cells in the BM inoculum. To aggressively investigate the GVHD potential of these donor CD8+ populations, a purified cell model of lethal GVHD was established in a murine semiallogeneic parent → F1 combination. Lethally irradiated recipients were reconstituted with purified donor HSCs alone or in combination with splenic T cells (TSP), BM-derived T cells (TBM), or the FC population. In marked contrast to the lethal GVHD present in recipients of HSCs plus TSP or CD8+ TBM, recipients of donor HSC+FC inocula did not exhibit significant clinical or histologic evidence of GVHD. Instead, HSC+FC recipients were characterized by increased splenocyte expression of transforming growth factor-β (TGF-β) and the induction of the regulatory T-cell genes CTLA4, GITR, and FoxP3. These findings suggest that the FCs, which express a unique FCp33-TCRβ heterodimer in place of αβTCR, permits HSC alloengraftment and prevents GVHD through the novel approach of regulatory T-cell induction in vivo.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 867
Author(s):  
Ling Wu ◽  
Joanna Brzostek ◽  
Shvetha Sankaran ◽  
Qianru Wei ◽  
Jiawei Yap ◽  
...  

Chimeric antigen receptor T cells (CAR-T) utilize T cell receptor (TCR) signaling cascades and the recognition functions of antibodies. This allows T cells, normally restricted by the major histocompatibility complex (MHC), to be redirected to target cells by their surface antigens, such as tumor associated antigens (TAAs). CAR-T technology has achieved significant successes in treatment of certain cancers, primarily liquid cancers. Nonetheless, many challenges hinder development of this therapy, such as cytokine release syndrome (CRS) and the efficacy of CAR-T treatments for solid tumors. These challenges show our inadequate understanding of this technology, particularly regarding CAR signaling, which has been less studied. To dissect CAR signaling, we designed a CAR that targets an epitope from latent membrane protein 2 A (LMP2 A) of the Epstein–Barr virus (EBV) presented on HLA*A02:01. Because of this, CAR and TCR signaling can be compared directly, allowing us to study the involvement of other signaling molecules, such as coreceptors. This comparison revealed that CAR was sufficient to bind monomeric antigens due to its high affinity but required oligomeric antigens for its activation. CAR sustained the transduced signal significantly longer, but at a lower magnitude, than did TCR. CD8 coreceptor was recruited to the CAR synapse but played a negligible role in signaling, unlike for TCR signaling. The distinct CAR signaling processes could provide explanations for clinical behavior of CAR-T therapy and suggest ways to improve the technology.


1986 ◽  
Vol 163 (5) ◽  
pp. 1037-1050 ◽  
Author(s):  
J H Kehrl ◽  
L M Wakefield ◽  
A B Roberts ◽  
S Jakowlew ◽  
M Alvarez-Mon ◽  
...  

This study examines the potential role of transforming growth factor beta (TGF-beta) in the regulation of human T lymphocyte proliferation, and proposes that TGF-beta is an important autoregulatory lymphokine that limits T lymphocyte clonal expansion, and that TGF-beta production by T lymphocytes is important in T cell interactions with other cell types. TGF-beta was shown to inhibit IL-2-dependent T cell proliferation. The addition of picograms amounts of TGF-beta to cultures of IL-2-stimulated human T lymphocytes suppressed DNA synthesis by 60-80%. A potential mechanism of this inhibition was found. TGF-beta inhibited IL-2-induced upregulation of the IL-2 and transferrin receptors. Specific high-affinity receptors for TGF-beta were found both on resting and activated T cells. Cellular activation was shown to result in a five- to sixfold increase in the number of TGF-beta receptors on a per cell basis, without a change in the affinity of the receptor. Finally, the observations that activated T cells produce TGF-beta mRNA and that TGF-beta biologic activity is present in supernatants conditioned by activated T cells is strong evidence that T cells themselves are a source of TGF-beta. Resting T cells were found to have low to undetectable levels of TGF-beta mRNA, while PHA activation resulted in a rapid increase in TGF-beta mRNA levels (within 2 h). Both T4 and T8 lymphocytes were found to make mRNA for TGF-beta upon activation. Using both a soft agar assay and a competitive binding assay, TGF-beta biologic activity was found in supernatants conditioned by T cells; T cell activation resulted in a 10-50-fold increase in TGF-beta production. Thus, TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF-beta.


Reproduction ◽  
2014 ◽  
Vol 147 (4) ◽  
pp. 419-426 ◽  
Author(s):  
Riccardo Cipelli ◽  
Lorna Harries ◽  
Katsuhiro Okuda ◽  
Shin'ichi Yoshihara ◽  
David Melzer ◽  
...  

Bisphenol A (BPA) is a widely used plastics constituent that has been associated with endocrine, immune and metabolic effects. Evidence for how BPA exerts significant biological effects at chronic low levels of exposure has remained elusive. In adult men, exposure to BPA has been associated with higher expression of two nuclear receptors, oestrogen receptor-β (ERβ) and oestrogen-related-receptor-α (ERRα), in peripheral white blood cells in vivo. In this study, we explore the expression of ESR2 (ERβ) and ESRRA (ERRα) in human leukaemic T-cell lymphoblasts (Jurkat cells) exposed to BPA in vitro. We show that exposure to BPA led to enhanced expression of ESRRA within 6 h of exposure (mean±s.e.m.: 1.43±0.08-fold increase compared with the control, P<0.05). After 72 h, expression of ESRRA remained significantly enhanced at concentrations of BPA ≥1 nM. Oxidative metabolism of BPA by rat liver S9 fractions yields the potent oestrogenic metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). Exposure of cells to 1–100 nM MBP increased the expression of both ESRRA (significantly induced, P<0.05, at 1, 10, 100 nM) and ESR2 (1.32±0.07-fold increase at 100 nM exposure, P<0.01). ERRα is a major control point for oxidative metabolism in many cell types, including T-cells. Following exposure to both BPA and MBP, we found that cells showed a decrease in cell proliferation rate. Taken together, these results confirm the bioactivity of BPA against putative T-cell targets in vitro at concentrations relevant to general human exposure.


2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


1999 ◽  
Vol 67 (12) ◽  
pp. 6461-6472 ◽  
Author(s):  
Roxana E. Rojas ◽  
Kithiganahalli N. Balaji ◽  
Ahila Subramanian ◽  
W. Henry Boom

ABSTRACT Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor β [TGF-β]) cytokines. IL-10 and TGF-β are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-β on M. tuberculosis-reactive human CD4+and γδ T cells, the two major human T-cell subsets activated byM. tuberculosis, was investigated. Both IL-10 and TGF-β inhibited proliferation and gamma interferon production by CD4+ and γδ T cells. IL-10 was a more potent inhibitor than TGF-β for both T-cell subsets. Combinations of IL-10 and TGF-β did not result in additive or synergistic inhibition. IL-10 inhibited γδ and CD4+ T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4+ T cells and, to a lesser extent, for γδ T cells. TGF-β inhibited both CD4+ and γδ T cells directly and had little effect on APC function for γδ and CD4+ T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-β. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-β both inhibited CD4+ and γδ T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.


2021 ◽  
Vol 7 (28) ◽  
pp. eabg5859
Author(s):  
Amit Jairaman ◽  
Shivashankar Othy ◽  
Joseph L. Dynes ◽  
Andriy V. Yeromin ◽  
Angel Zavala ◽  
...  

T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor–β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2089-2096 ◽  
Author(s):  
David C. Halverson ◽  
Gretchen N. Schwartz ◽  
Charles Carter ◽  
Ronald E. Gress ◽  
Daniel H. Fowler

Abstract We have previously shown that allospecific murine CD8+ T cells of the Tc1 and Tc2 phenotype could be generated in vitro, and that such functionally defined T-cell subsets mediated a graft-versus-leukemia (GVL) effect with reduced graft-versus-host disease (GVHD). To evaluate whether analogous Tc1 and Tc2 subsets might be generated in humans, CD8+ T cells were allostimulated in the presence of either interleukin-12 (IL-12) and transforming growth factor-beta (TGF-β) (Tc1 culture) or IL-4 (Tc2 culture). Tc1-type CD8 cells secreted the type I cytokines IL-2 and interferon gamma (IFN-γ), whereas Tc2-type cells primarily secreted the type II cytokines IL-4, IL-5, and IL-10. Both cytokine-secreting populations effectively lysed tumor targets when stimulated with anti–T-cell receptor (TCR) antibody; allospecificity of Tc1- and Tc2-mediated cytolytic function was demonstrated using bone marrow–derived stimulator cells as targets. In addition, both Tc1 and Tc2 subsets were capable of mediating cytolysis through the fas pathway. We therefore conclude that allospecific human CD8+ T cells of Tc1 and Tc2 phenotype can be generated in vitro, and that these T-cell populations may be important for the mediation and regulation of allogeneic transplantation responses.


Sign in / Sign up

Export Citation Format

Share Document