In vitro digestibility of forages supplemented with cellulose (filter paper) and branched-chain fatty acids or amino acids

1991 ◽  
Vol 71 (4) ◽  
pp. 1149-1158 ◽  
Author(s):  
P. S. Mir ◽  
Z. Mir ◽  
B. M. Pink

In vitro studies were conducted to determine dry matter (DM) digestibility of filter paper (FP), alfalfa hay (AA), corn silage (CS) and barley silage (BS) containing (as percent of DM) 0, 20 and 40% of FP and 0, 2 and 4% of either isoleucine (ILE) for CS, BS and FP, or its metabolite 2-methyl butyric acid (2MB) for AA. Digestibility of acid detergent fibre (ADF) of AA, CS and FP and of combinations of these forages with FP was determined. Digestibility of DM was determined after incubation with rumen fluid only or employing the two-stage Tilley and Terry technique. ADF digestibility was calculated after determining ADF in the original material and the residue after incubation for DM digestibility. Inclusion of FP increased (P < 0.05) digestibility of DM and ADF from 57.3 and 42.0 to 73.9 and 76.9% for AA and from 71.7 and 64.8 to 79.3 and 81.7% for CS, respectively. DM digestibility of BS increased (P < 0.05) from 65.7 to 74.6%. Addition of ILE to FP resulted in a quadratic (P < 0.05) increase in DM and ADF digestibility from 43.7 to 55.4 to 52.0% and from 47.4 to 55.1 and to 60.4%, respectively. Microbial protein produced after incubation with rumen fluid of all the forages and forage-FP combinations was determined using cytosine as a marker. Cytosine was determined in the incubated material and in the centrifugate. Increases in microbial protein production after addition of cellulose were noted for AA only. Key words: In vitro digestibility, forages, filter paper, isoleucine, 2-methyl butyric acid, cytosine, microbial protein

2014 ◽  
Vol 54 (8) ◽  
pp. 1039 ◽  
Author(s):  
R. Rodríguez ◽  
G. de la Fuente ◽  
S. Gómez ◽  
M. Fondevila

The biological effect of tannins (proportion of the response in different parameters when tannins were inactivated with polyethylene glycol, PEG) as an easy, rapid way to estimate the magnitude of their effect on rumen microbial fermentation, was estimated in vitro for the tropical browse legumes Albizia lebbekoides, Acacia cornigera and Leucaena leucocephala, which differ in their phenolic and tannin content. Samples were incubated in rumen fluid for 24 h in four runs. The inactivation by PEG of tannins from A. lebbekoides increased gas production from 1.62- to 2.83-fold, with this biological effect increasing up to 8 h incubation, then being maintained and increasing after 16 h. In A. cornigera and L. leucocephala, the magnitude of the improvement of gas production was lower (from 1.1- to 1.32-fold and from 1.29- to 1.56-fold) and constant. The inclusion of PEG increased total volatile fatty acids (VFA) concentration (P = 0.019), reduced the molar proportion of acetate (P < 0.001) and increased that of butyrate (P < 0.001) and branched-chain VFA (P < 0.001). Microbial protein mass in A. lebbekoides increased with PEG in a higher extent (P < 0.001) than in L. leucocephala, but it was reduced in A. cornigera. No biological effect was observed on the efficiency of microbial protein synthesis when it was related to VFA concentration (P > 0.10), but when related to the gas produced it was lowest with A. lebbekoides (P = 0.023). The biological effect of tannins, either in total extent or along the incubation period differed according to their origin. Irrespective of their amount or chemical nature, the biological effect gives a direct idea of how tannins affect both the extent and pattern of forages fermentation.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P &lt; 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 477-477
Author(s):  
Wenzhu Yang

Abstract Red osier dogwood (ROD) is a native shrub plant rich in phenolic compounds with antimicrobial properties. The objective of this study was to evaluate the effects of substituting barley silage with either raw ROD or ROD extract (RODE) in high-grain (HG) diet under a low media pH (5.8) on gas production (GP), dry matter (DM) disappearance (DMD) and fermentation characteristics in batch cultures. The study was a completely randomized design with 4 treatments: 1) control diet (10% barley silage and 90% barley concentrate, DM basis), control diet supplemented with 2) monensin (30 mg/kg diet DM; positive control), 3) substitution of 3% ROD or 4) 3% RODE for an equal portion of silage. Inoculum was obtained from 2 ruminally fistulated beef heifers offered the HG diet. Substrate ground (1 mm) was incubated for 24 h and the experiment repeated twice. The GP did not differ among treatments (147 ml/g DM), but the DMD differed (P &lt; 0.02) at highest for control (69.4%), lowest for ROD (58.4%) and intermediate for other treatments (64.1%). Total volatile fatty acid (VFA) concentration (mM) tended (P&lt; 0.08) to be lower with ROD (80.5) and monensin (80.1) than control (83.9). Acetate proportion was greater (P = 0.02) with ROD (46.2%) and RODE (46.9%) than control (42.4%) and monensin (42.3%). However, the propionate proportion was greater (P = 0.05) with monensin (32.1%) than other treatments (averaged 30.1%). Consequently, acetate to propionate ratio (A:P) of ROD (1.52) and RODE (1.56) was higher than monensin (1.32; P &lt; 0.01) and control (1.44; P &lt; 0.08). Differences in variables measured between ROD and RODE were minimal. These results indicated that the decreased DMD along with increased A:P with addition of ROD or RODE suggests that both ROD and RODE may be beneficial to HG fed cattle for reducing risk of rumen acidosis without negatively impacting fibre digestion.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 66-67
Author(s):  
Taylor J Garcia ◽  
Jeffrey A Brady ◽  
Kimberly A Guay ◽  
James P Muir ◽  
William B Smith

Abstract Microbes and chemical constituents in the rumen fluid play an important role when re-establishing the rumen microbial population. Identification of a viable preservation method could have lasting implication of veterinary and research applications. Our objective was to determine the efficacy of preservation methods on rumen liquor. Twelve paunch samples were collected from slaughtered cattle at the Tarleton State University Meat Laboratory, Stephenville, TX. Rumen content was collected from different locations within the rumen, strained through eight layers of cheesecloth, and divided into five 500-mL aliquots. Aliquots were randomly allocated to one of five preservation methods (freezing or lyophilisation) and preservative (glycerol; yes or no). A fresh control was maintained from each sample. Three reference feeds and two roughage sources were used in the batch culture procedure. Reference feeds were dried to a constant weight at 55°C and ground to pass through a 2-mm screen. Ground samples were subjected to batch culture in vitro true digestibility (IVTD) assays using each of the four ruminal fluids (plus the control) for digestibility estimates. Original samples and incubated residues were assayed for DM, CP, NDF, and ADF. Data were analyzed in a 2 × 2 + 1 augmented factorial design using GLIMMIX procedure of SAS. There were no differences (P > 0.05) in IVTD when using protein or energy feeds; however, there were differences in IVTD for all treatments for fiber concentrates and forage reference feeds. Despite lower degradation of feeds when frozen or lyophilized rumen fluid was used, preserved rumen fluid may be a viable option in the absence of fresh inoculum for veterinary and research applications


Pastura ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 47
Author(s):  
Afduha Nurus Syamsi ◽  
Fransisca Maria Suhartati ◽  
Wardhana Suryapratama

An experiment was aimed to assess the use of the legume leaf as a source of protein feedstuff and levels of synchronization protein-energy (SPE) index in the diet of cattles on ammonia (N-NH3) and microbial protein synthesis (MPS). In vitro techniques was done. The research was used a completely randomized design (CRD), with factorially pattern (2x3), the first factor was the two species of legume (Sesbania leaves and Leucaena leaves) and the second factor was the three level of the SPE index (0.4, 0.5, and 0.6), there were 6 treatment combinations and each was 4 replicates. The results showed that no interaction between legume with SPE index, but each factor was significantly effect (P<0.05) on N-NH3 of rumen fluid and MPS. The research concluded that Leucaena leaf is a legume that is better than Sesbania leaf in terms of their ability toincrease MPS. SPE index is the best in producing MPS at level 0.6. Key words: Legume, synchronization of protein and energy index, ammonia, microbial protein synthesis


2009 ◽  
Vol 49 (7) ◽  
pp. 563 ◽  
Author(s):  
David B. Coates ◽  
Robert J. Mayer

In a study that included C4 tropical grasses, C3 temperate grasses and C3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin–cellulase or rumen fluid–pepsin in vitro techniques. For both C4 and C3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C3 grasses than for C4 grasses but data on C3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin–cellulase method was used but there was a small but significant positive effect using the rumen fluid–pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 775 ◽  
Author(s):  
Sonia Tassone ◽  
Riccardo Fortina ◽  
Pier Giorgio Peiretti

This review summarises the use of the Ankom DaisyII incubator (ADII; Ankom Technology Corporation Fairport, NY, USA), as presented in studies on digestibility, and its extension to other species apart from ruminants, from its introduction until today. This technique has been modified and adapted to allow for different types of investigations to be conducted. Researchers have studied and tested different procedures, and the main sources of variation have been found to be: the inoculum source, sample size, sample preparation, and bag type. In vitro digestibility methods, applied to the ADII incubator, have been reviewed, the precision and accuracy of the method using the ADII incubator have been dealt with, and comparisons with other methods have been made. Moreover, some hypotheses on the possible evolutions of this technology in non-ruminants, including pets, have been described. To date, there are no standardised protocols for the collection, storage, and transportation of rumen fluid or faeces. There is also still a need to standardise the procedures for washing the bags after digestion. Moreover, some performance metrics of the instrument (such as the reliability of the rotation mechanism of the jars) still require improvement.


Author(s):  
C.J. Newbold ◽  
R.J. Wallace ◽  
I.M. Nevison

A wide range of compounds has been described which have the potential to improve animal production by manipulating the rumen fermentation. Prominent among these rumen modifiers are the ionophores. Ionophores, such as monensin and tetronasin, improve feed efficiency, partly by increasing the flow of amino-N from the rumen and partly by stimulating the production of propionate in the rumen with an associated reduction in the production of methane (Russell and Strobel, 1988). Recently there has been increasing interest in the use of yeast culture (YC) and other fungal preparation to modify the rumen fermentation. These products have been shown to increase bacterial numbers within the rumen with an associated increase in the breakdown of fibre and supply of microbial protein (Williams and Newbold, 1990). YC has also been reported to increase the production of propionate in the rumen. Little appears to be known about the effect a combination YC and an ionophore would have on the rumen fermentation. This study describes the effects of the ionophores monensin and tetronasin on the fermentation of hay by rumen fluid from sheep fed a basal diet with or without YC.


2014 ◽  
Vol 65 (5) ◽  
pp. 479 ◽  
Author(s):  
Belete Shenkute Gemeda ◽  
Abubeker Hassen

This study characterised 16 tropical perennial grass species in terms of in vitro methane output and related their digestibility and rumen fermentation with methane output. The grass samples were collected, dried in a forced oven, and ground and analysed for nutrient composition. In vitro gas production and organic matter digestibility (IVOMD) were determined using rumen fluid collected, strained and anaerobically prepared. A semi-automated system was used to measure gas production through in vitro incubation at 39°C. Anthephora argentea and Stipagrostis ciliate produced the highest concentration of methane in terms of g kg–1 digestible dry matter (DDM) and g kg–1 digestible organic matter (IVOMD). Cenchrus ciliaris, Setaria verticillata and Panicum coloratum produced the lowest (P < 0.05) methane when expressed in terms of g kg–1 DDM and g kg–1 IVOMD. Ash, ether extract, non-fibrous carbohydrate, neutral and acid detergent insoluble nitrogen, and crude protein were negatively correlated with methane production. Methane production positively correlated with neutral and acid detergent fibre, cellulose and hemicellulose. It is important to focus on screening and selecting perennial grass with higher nitrogen content and low methane production to mitigate methane production under tropical conditions.


Sign in / Sign up

Export Citation Format

Share Document