Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield

2007 ◽  
Vol 87 (4) ◽  
pp. 973-983 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
H. C. Huang

There is a renewed interest, especially among organic growers, in using either white sweetclover (Melilotus alba Desr.) or yellow sweetclover [M. officinalis (L.) Lam.] as cover crops. Sweetclover cultivars and tillage practices have changed since these crops were widely used as cover crops in the first half of the 20th century. Experiments were initiated in 1999, 2000, and 2002 to compare the effect of high- and low-coumarin cultivars and crop termination methods on weed suppression, available soil N, moisture conservation and following crop yield. Weed suppression was usually more effective when sweetclover residues were left on the surface than when removed as hay. Sweetclover termination at 70% bloom was often more effective in suppressing weeds than termination at the bud stage. In the summer and fall after termination, surface residues of Yukon, a high-coumarin and drought-tolerant cultivar, reduced lamb’s-quarters (Chenopodium album L.) density by > 80% compared with the no sweetclover check and essentially eliminated flixweed [Descurainia Sophia (L). Webb]. In the following spring, Yukon reduced kochia [Kochia scoparia (L.) Schrad.] density by > 80% and wild oat (Avena fatua L.) biomass by > 30% compared with the no sweetclover check. There was no difference in available N for a following crop between treatments with surface residue and cultivated fallow. Available soil moisture was about 10 mm less after the highest yielding sweetclover cultivars than after cultivated fallow, but subsequent wheat yield was not reduced. Maximum wheat yields were obtained after Yukon and Arctic sweetclover were grown as cover crops. It may be possible for organic growers to manage weeds with sweetclover in a reduced tillage system that leaves most of the plant residues on the soil surface. Key words: Cover crop, weed suppression, allelopathy, nitrogen, soil moisture

HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Daniel C. Brainard ◽  
John Bakker ◽  
D. Corey Noyes ◽  
Norm Myers

Living mulches growing below asparagus (Asparagus officinales) fern can improve soil health and suppress weeds but may also suppress asparagus through competition for water or nutrients. The central objective of this research was to test whether cereal rye (Secale cereale) living mulch, in combination with overhead irrigation, could provide comparable weed suppression to standard residual herbicides without reducing asparagus yields. A field experiment was conducted from 2008 to 2010 in a mature asparagus planting on sandy soils in western Michigan to evaluate the effects of irrigation (none vs. overhead) and weed management systems (standard herbicides vs. rye living mulch) on weed suppression, soil moisture content, and asparagus yield. Rye living mulch and herbicide treatments were established immediately after asparagus harvest in late June of each year. Rye living mulch reduced soil-available water in early August by 26% to 52% compared with herbicide treatments but had no detectable effect on asparagus yields. Compared with herbicide treatments, rye living mulch reduced fall-germinating weed emergence and resulted in lower densities of horseweed (Conyza canadensis) during asparagus harvest. However, in 2 of 3 years, the living mulch system resulted in higher densities of summer annual weeds—including Powell amaranth (Amaranthus powellii) and longspine sandbur (Cenchrus longispinus)—during the fern growth period compared with herbicide treatments. After 3 years, the density of summer annual weeds was more than 10-fold greater in rye living mulch treatments compared with standard residual herbicides treatments. Our results suggest that 1) soil-improving rye cover crops can partially suppress weeds but may also compete with asparagus for soil moisture in dry years unless irrigation is used; and 2) successful use of rye living mulches for weed management will depend on identification of complementary weed management practices to avoid build-up of the summer annual weed seedbank.


Author(s):  
V. P. Belobrov ◽  
S. А. Yudin ◽  
V. А. Kholodov ◽  
N. V. Yaroslavtseva ◽  
N. R. Ermolaev ◽  
...  

The influence of different systems of soil cultivation is considered - traditional (recommended) technology and direct sowing, which is increasingly used under dry conditions of the region. The rehabilitation of the degraded southern chernozems and dark chestnut soils structure during 13 and 7 years of direct sowing, respectively, has not been established. It takes much longer to rehabilitation the aggregate state of soils, which is currently in a critical condition of the content of aggregates> 10 mm in size and the sum of agronomically valuable aggregates. The soils under 60-year treeline, as a control, showed a satisfactory range of aggregates, which indicates a high degree of soil degradation in the past and a long period of their recovery time. The effectiveness of direct sowing usage in the cultivation of a wider range of grain and row crops (winter wheat, sunflower, peas, chickpeas, rapeseed, buckwheat, corn) is due to the peculiarities of agricultural technologies. Abandoning of naked fallows and soil treatments with the simultaneous use of plant residues and cover crops on the soil surface between the harvest and sowing of winter crops provides an anti-erosion effect and, as a consequence, a decrease in physical evaporation, an increase in moisture and biota reserves, an increase in microbiological processes, which are noted in the form trends in improving the agrochemical and agrophysical properties of soils.


2020 ◽  
Vol 13 ◽  
pp. 117862212094806 ◽  
Author(s):  
MJ Marques ◽  
M Ruiz-Colmenero ◽  
R Bienes ◽  
A García-Díaz ◽  
B Sastre

The study of alternative soil managements to tillage, based on the evidence of climate change in the Mediterranean basin, is of great importance. Summer and autumn are critical seasons for soil degradation due to the high-intensity, short-duration storms. Vineyards are vulnerable, especially on steep slopes. The particular effects of storms over the years under different soil conditions due to different management practices are not frequently addressed in the literature. The aim of this study was to examine the differences between runoff and soil moisture patterns influenced by 2 treatments: traditional tillage (Till) and a permanent cover crop. A shallow-rooted grass species Brachypodium distachyon (L.) P. Beauv. with considerable density coverage was selected as cover crop. This annual species was seeded once in the first year and then allowed to self-seed the following years. Tillage was performed at least twice in spring to a 10- to 15-cm depth and once in late autumn at a depth of 20 to 35 cm. Rainfall simulation experiments were performed, 1 year after treatments, using high-intensity rainfall on closed plots of 2 m2, located in the middle strips of the vineyard with different treatments. The effects of simulated rainfall experiments were determined in 3 different moments of the growth cycle of cultivar: (1) in summer with dry soils, (2) in early autumn with moderate soil moisture, and (3) in autumn with wet soils. During the 2-year trial, the soil moisture level in the soil upper layer (0-10 cm) was higher for Till treatment (14.1% ± 2.4%) compared with that for cover crop treatment (12.3% ± 2.0%). However, soil moisture values were more similar between treatments at 35 cm depth (12% ± 1%), with the exception of spring and autumn; in spring, water consumption in the cover crop treatment was the highest, and the moisture level at 35 cm depth was reduced (12%) compared with that for Till treatment (13%). In autumn, in cover crop treatment, higher water infiltration rate in soils led to higher soil moisture content at 35 cm (11%) compared with that of Till treatment (10%). The effects of simulated rainfall experiments on runoff and infiltration under different soil conditions and management practices vary seasonally. Runoff was significantly higher in summer for cover crop treatment (11%) as compared with that for Till management (1%), but significantly lower (3%) with wetter soils than for Till treatment (22%) in autumn. Thus, the simulation experiments with wet soils using cover crops produced higher infiltration rates and, consequently, the higher soil moisture content in the following days. The difference between seasons is attributed to the greater porosity of soil under Till treatment in summer, which resulted from the shallow plowing (10-15 cm depth), carried out to reduce moisture competition between weeds. The effect of traditional spring plowing was short-lived. The infiltration of water increased by cover crop treatment as compared with tillage in autumn both before and after ripping. Management practices did not influence wine parameters, as no significant differences were found between wine organoleptic characteristics in the duo-trio wine tastings, similarly, no differences were found for alcoholic degree, acidity, reduced sugars, and pH; however, a trend for a positive increase in polyphenol contents was noticed. Therefore, properly managed to avoid water shortages, cover crops can be recommended for soil protection in semi-arid environments.


Crop Science ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 1745-1752 ◽  
Author(s):  
Abdel Mesbah ◽  
Abdelaziz Nilahyane ◽  
Binod Ghimire ◽  
Leslie Beck ◽  
Rajan Ghimire

Author(s):  
Mallikarjun . ◽  
Hardev Ram ◽  
Rakesh Kumar ◽  
Magan Singh ◽  
R. K. Meena ◽  
...  

Background: Agriculture and its allied sectors is an important sector in employment, income and food security. The increasing demands for food grains and cash crops, the area under fodder crops has been static since last 3-4 decades (8.4 mha) resulted into a net deficit in dry and green fodder is around 10 and 35%, respectively making livestock rearing more challenging. Conventional agriculture has largelybeen characterized by conventional tillage which caused soil degradation and negative impacts on soil physical and biological activity. To mitigate these negative effects, resource conservation technologies (RCTs) was tested and adopted to save substantial quantity of irrigation water, reducing the cost of cultivation, timely sowing, improve input use efficiency and left indirect effect on mitigating the adverse effect of climate changes. Biological N2 fixation (BNF) can make plants self-sustaining for N nutrition and avoiding the need for mineral N fertilization. The current study aimed enhancing fodder production by adoption of modern tillage practices and efficient N management. Methods: In this field-laboratory investigation during 2017-18, experiment was laid out in the split plot design consisting of three tillage practices zero tillage (ZT), conventional tillage (CT) and raised bed (RB) and six N management viz., N0, N75, N75+Rhizo, N100, N100+Rhizo and N125%. The soil of the experimental field was clay loam in texture having pH 7.30, EC; 0.35 dS/m, medium in organic carbon (0.63%), low in nitrogen (188.48 kg/ha), medium in phosphorus (23.56 kg/ha) and potassium (271.12 kg/ha). The recommended dose of fertilizer and other cultural practices was applied as per treatments with standard process. The crop was harvested at 60 days after sowing and weighed for green fodder yield. The observations growth, yields and quality parameters was recorded as per the standard method. Statistical analysis was done using analysis of variance in split plot design. Result: ZT practices significantly improved growth attributes, fodder yield and available nitrogen. Higher fodder yield of cowpea was recorded with ZT as compared to CT and it was statistically similar in RB. The nitrogen management practices had significant effect on root length and root nodules, plant growth attributes, fodder yield and available N, P and K. The significant fodder yield was increase with successive increase of N application up to 75% N + rhizobium, over 0 and 75% N alone. The present work shows that adoption of ZT and inoculation of rhizobia had significantly improved soil health and stabilized fodder yield of cowpea besides decrease fertilizer nitrogen requirement in the irrigated agro-ecosystem of T-IGP.


2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat


2009 ◽  
Vol 60 (6) ◽  
pp. 517 ◽  
Author(s):  
J. P. M. Whish ◽  
L. Price ◽  
P. A. Castor

During the 14-month-long fallow that arises when moving from summer to winter crops, stubble breakdown can denude the soil surface and leave it vulnerable to erosion. Cover crops of millet have been proposed as a solution, but this then raises the question, how often is there sufficient water in the system to grow a cover crop without reducing the soil water reserves to the point of prejudicing the following wheat crop? An on-farm research approach was used to compare the traditional long fallow (TF) with a millet fallow (MF) in a total of 31 commercial paddocks over 3 years. Each treatment was simulated using the simulation-modelling framework (APSIM) to investigate the outcomes over a longer timeframe and to determine how often a millet fallow could be successfully included within the farming system. The on-farm trials showed that early-sown millet cover crops removed before December had no effect on wheat yield, but this was not true of millet cover crops that were allowed to grow through to maturity. Long-term simulations estimated that a spring cover crop of millet would adversely affect wheat yields in only 2% of years if planted early and removed after 50% cover had been achieved.


1999 ◽  
Vol 79 (3) ◽  
pp. 473-480 ◽  
Author(s):  
S. D. Wanniarachchi ◽  
R. P. Voroney ◽  
T. J. Vyn ◽  
R. P. Beyaert ◽  
A. F. MacKenzie

Agricultural management practices affect the dynamics of soil organic matter (SOM) by influencing the amount of plant residues returned to the soil and rate of residue and SOM decomposition. Total organic C and δ13C of soil were measured in two field experiments involving corn cropping to determine the effect of tillage practices on SOM dynamics. Minimum tillage (MT) and no tillage (NT) had no significant impact on the soil C compared with conventional tillage (CT) in the 0- to 50-cm soil depth sampled at both sites. Continuous corn under MT and CT for 29 yr in a silt loam soil sequestered 61–65 g m−2 yr−1 of corn-derived C (C4-C), and it accounted for 25–26% of the total C in the 0- to 50-cm depth. In a sandy loam soil cropped to corn for 6 yr, SOM contained 10 and 8.4% C4-C under CT and NT, respectively. Reduced tillage practices altered the distribution of C4-C in soil, causing the surface (0–5 cm) soil of reduced tillage (MT and NT) plots to have higher amounts of C4-C compared to CT. Tillage practices did not affect the turnover of C3-C in soil. Key words: Soil organic matter, 13C natural abundance, tillage practices


2021 ◽  
Vol 27 (2) ◽  
pp. 213-225
Author(s):  
Muhamamd Arif

Frequent utilization of herbicides has caused ecological and health complications for human beings as well as for animals. Moreover, its unwise application also developed resistance in some weed species against the herbicides. Therefore, a field investigation was planned to assess the effect of multi-approached weed suppression in wheat at Reclamation Research Station, 7/3-L Ahmad Pur Sial District Jhang during Rabi 2019-20. Experimental treatment was comprised of two wheat cultivars i.e. Ujala 2016 and Faisalabad 2008 and seven weeds control approaches i.e. hand weeding, organic mulching, eucalyptus extract, neem extract, clodinafop, bromoxynil + MCPA and clodinafop + bromoxynil + MCPA including control. Results of the experiment showed that hand weedings, combined application of clodinafop + bromoxynil + MCPA and mulching significantly reduced the weeds density, fresh and dry weight of weeds. However, covering the soil surface with the organic mulch may have a great impact on the growth and yield-contributing attributes, hence produced maximum grain yield.


2020 ◽  
Vol 8 (11) ◽  
pp. 1773
Author(s):  
Nakian Kim ◽  
María C. Zabaloy ◽  
Chance W. Riggins ◽  
Sandra Rodríguez-Zas ◽  
María B. Villamil

Metagenomics in agricultural research allows for searching for bioindicators of soil health to characterize changes caused by management practices. Cover cropping (CC) improves soil health by mitigating nutrient losses, yet the benefits depend on the tillage system used. Field studies searching for indicator taxa within these systems are scarce and narrow in their scope. Our goal was to identify bioindicators of soil health from microbes that were responsive to CC (three levels) and tillage (chisel tillage, no-till) treatments after five years under field conditions. We used rRNA gene-based analysis via Illumina HiSeq2500 technology with QIIME 2.0 processing to characterize the microbial communities. Our results indicated that CC and tillage differentially changed the relative abundances (RAs) of the copiotrophic and oligotrophic guilds. Corn–soybean rotations with legume–grass CC increased the RA of copiotrophic decomposers more than rotations with grass CC, whereas rotations with only bare fallows favored stress-tolerant oligotrophs, including nitrifiers and denitrifiers. Unlike bacteria, fewer indicator fungi and archaea were detected; fungi were poorly identified, and their responses were inconsistent, while the archaea RA increased under bare fallow treatments. This is primary information that allows for understanding the potential for managing the soil community compositions using cover crops to reduce nutrient losses to the environment.


Sign in / Sign up

Export Citation Format

Share Document