Variable crop plant establishment contributes to differences in competitiveness with wild oat among cereal varieties

2005 ◽  
Vol 85 (4) ◽  
pp. 771-776 ◽  
Author(s):  
John T. O’Donovan ◽  
Robert E. Blackshaw ◽  
K. Neil Harker ◽  
George W. Clayton ◽  
Ross McKenzie

Field experiments were conducted at three locations in Alberta to determine the relative competitiveness with wild oat (Avena fatua L.) of three hard red spring (HRS) and three Canada prairie spring (CPS) wheat (Triticum aestivum L.) varieties and a semidwarf hull-less barley (Hordeum vulgare L.) (Falcon), and normal height general purpose barley (AC Lacombe). Crop variety significantly affected crop yield loss, wild oat shoot dry weight and wild oat seed yield (competitive indicators). AC Lacombe barley was consistently more competitive than Falcon barley or any of the wheat varieties, while the HRS wheat varieties were mainly more competitive than the CPS varieties. Falcon barley was generally similar in competitiveness to the CPS wheat varieties. Differences among varieties in crop plant density at establishment correlated significantly with the competitive indicators suggesting that this factor contributed to the differences in competitiveness among the varieties. Crop density tended to be higher with the more competitive AC Lacombe barley and HRS wheat varieties than with the less competitive Falcon barley and CPS wheat varieties. Variety and seeding rate did not interact significantly but intentionally increasing the seeding rate improved the competitiveness of all varieties. Key words: Hard red spring wheat, Canada prairie spring wheat, crop seeding rate, hull-less barley, semi-dwarf wheat and barley

Author(s):  
O. A. Demydov ◽  
A. A. Siroshtan ◽  
V. P. Kavunets ◽  
O. A. Zaima ◽  
S. F. Liskovskiy

Introduction. High-quality varietal seeds, which can ensure a gain of 0.2–0.4 t/ha in the yields from their offspring, is one of the most important and cost-effective means to increase the gross grain collection of grain. Purpose. To study productive capacities of spring wheat seeds depending on treatment of fields with fungicides and insecticides. Materials and methods. The following indicators were evaluated: swelling activity, germination energy, laboratory germinability, initial growth strength, coleoptile length and the number of radicles. Seed samples that after pesticide treatment had showed the best results were tested in field experiments for productive capacities. The experimental plot area was 10 m2, in six replications. Seeds were sown with a seeder SN-10Ts after soybean with a seeding rate of 5 million germinable seeds per hectare. Spring wheat seeds produced in the experimental plots, which were treated with fungicides Akula (0.6 L/ha) and Soligor 425 EC (0.6 L/ha) and insecticides Fas (0.15 L/ha) and Karate Zeon 050 CS (0.15 L/ha) in organogenesis stages VI, VIII and X, were evaluated for productive capacities. The study was carried out on varieties MIP Zlata, Bozhena, MIP Raiduzhna and Diana. Results and discussion. Over the study years, the gain in the yields of spring wheat varieties grown from seeds of fungicide-treated plants was 0.23–0.36 t/ha; the gain in the yields of spring wheat varieties grown from seeds of insecticide-treated plants was – 0.24-0.31 t/ha. Pesticide-treated parental plants produced seeds with increased productive capacities: when such seeds were sown, the field germinability increased by 3-5%, and the plant survival – by 5-7%. Conclusions. The results indicate that the treatment of vegetating plants of spring wheat varieties in seed plots with fungicides and insecticides is a reliable way to obtain seeds with high productive capacities


Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Harry L. Carlson ◽  
James E. Hill

Field experiments were conducted to determine the effect of nitrogen fertilization on competition between wild oat (Avena fatuaL. # AVEFA) and spring wheat (Triticum aestivum‘Anza’). Nitrogen fertilizer treatments were applied over several wild oat-wheat density combinations. Wheat grain yield in wild oat-infested plots generally declined with fertilization while the density of wild oat panicles increased. Apparently, in competition with wheat, wild oat was better able to utilize the added nitrogen and thus gained a competitive advantage over the wheat. The increased competitiveness of wild oat resulted in reduced crop yields. Under the conditions of these experiments, nitrogen fertilization resulted in positive wheat yield response only when the wild oat plant density was below 1.6 percent of the total plant density.


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha

Field experiments were conducted at the Montana State University Southern Agricultural Research Center, Huntley, MT, in 2011 through 2013 to determine the effect of nitrogen (N) rate, seeding rate, and weed removal timing on weed interference in barley. A delay in weed removal timing from the 3- to 4-leaf (LF) stage to the 8- to 10-LF stage of barley resulted in up to 3.5-fold increase in total weed biomass and 10% reduction in barley biomass, and this was unaffected by a N rate that ranged from 56 (low) to 168 (high) kg ha−1. The effect of N rate on barley biomass was more pronounced when weed removal was delayed from the 3- to 4-LF stage to the 8- to 10-LF stage of barley and in nontreated plots. Increasing the barley seeding rate from 38 to 152 kg ha−1increased the barley plant density by 50%, biomass by 13%, and grain yield by 29%, averaged over N rates and weed removal timing. On the basis of 5 and 10% levels of acceptable yield loss, the addition of ≥112 kg N ha−1delayed the critical timing of weed removal by at least 1.3 wk in barley, compared with the 56 kg N ha−1rate. A medium or high N rate prevented reduction in barley grain quality (plumpness and test weight) observed when the seeding rate was increased from 38 to 76 or 152 kg ha−1at the low N rate. In a separate greenhouse study, the effect of N rate on the effectiveness of various herbicides for controlling wild oat, green foxtail, kochia, or Russian thistle was investigated. Results highlighted that wild oat or green foxtail grown under 56 kg N ha−1(low N) soil required 1.4 to 2.6 times higher doses of clodinafop, fenoxaprop, flucarbazone, glyphosate, glufosinate, pinoxaden, or tralkoxydim for 50% reduction in shoot dry weights (GR50) compared with plants grown under 168 kg N ha−1(high N). Similarly, a reduced efficacy of thifensulfuron methyl + tribenuron methyl, metsulfuron methyl, or bromoxynil+pyrasulfotole was observed (evident from the GR50values) for kochia or Russian thistle grown under low- vs. high-N soil. Information gained from this research will aid in developing cost-effective, integrated weed management (IWM) strategies in cereals and in educating growers on the importance of fertilizer N management as a component of IWM programs.


Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Robert N. Stougaard ◽  
Qingwu Xue

The development of competitive cropping systems could minimize the negative effects of wild oat competition on cereal grain yield, and in the process, help augment herbicide use. A 3-yr field experiment was conducted at Kalispell, MT, to investigate the effects of spring wheat seed size and seeding rate on wheat spike production, biomass, and grain yield under a range of wild oat densities. Wheat plant density, spikes, biomass, and yield all increased as seed size and seeding rates increased. Averaged across all other factors, the use of higher seeding rates and larger seed sizes improved yields by 12 and 18%, respectively. Accordingly, grain yield was more highly correlated with seed size than with seeding rate effects. However, the combined use of both tactics resulted in a more competitive cropping system, improving grain yields by 30%. Seeding rate effects were related to spike production, whereas seed size effects were related to biomass production. As such, plants derived from large seed appear to have greater vigor and are able to acquire a larger share of plant growth factors relative to plants derived from small seed.


2008 ◽  
Vol 88 (1) ◽  
pp. 43-52 ◽  
Author(s):  
R. L. Beavers ◽  
A. M. Hammermeister ◽  
B. Frick ◽  
T. Astatkie ◽  
R. C. Martin

Seeding rates in organic systems should balance a crop’s competitive ability while maintaining grain yield and quality. A 2-yr study assessed the response of spring wheat (Triticum aestivum L.) to variable seeding rates (1 × conventionally recommended rate, 1.25 ×, 1.5 × and 2 × ) in a plot experiment in Nova Scotia and on organic farms across Canada. The plot experiment was a two-factor factorial assessing seeding rate and fertility. For the Canada-wide experiment, the four seeding rates were completely randomized on each farm. Wheat yield was highest at the 2 × seeding rate in 2003, but average crop emergence across all treatment combinations was only 56%. In 2004, crop emergence was 76% and the 1.25 ×, 1.5 × and 2 × seeding rates had greater yield than the 1 × rate. Seeding rate affected plant density and heads per square metre, but no differences were observed among rates for kernels per head or thousand kernel weight. Grain protein content was similar among seeding rates and was increased by the high fertility treatment. On farms, a 1.25 × seeding rate was sufficient to maximize yield when averaged across all sites. Increasing seeding rate by at least 1.25 × the conventionally recommended rate appears to be an appropriate management practice for organic production. Key words: wheat (spring), seeding rate, crop density, organic agriculture


2021 ◽  
Vol 843 (1) ◽  
pp. 012038
Author(s):  
I I Seregina ◽  
I G Makarskaya ◽  
A S Tsygutkin ◽  
I V Kirichkova

Abstract To study the effect of sodium Selenite application different methods on the yield of spring wheat varieties, depending on the conditions of water supply, a series of vegetation experiments in accordance with the methodology were carried out. The object of the study is spring wheat of the Zlata variety (Triticum aestivum L.). It was found that the effect of selenium on the yield of wheat of the Zlata variety depended on the method of its application and the conditions of water supply. With optimal water supply, the positive effect of selenium on the yield of spring wheat plants was revealed with both methods of applying sodium selenite. It was found that in conditions of drought, the positive effect of selenium was obtained with both methods of using sodium selenite. The greatest efficiency of selenium is obtained in foliar processing of plants. The increase in grain weight in this variant was 1.4 times. The increase in the share of the agronomic significant part of the wheat crop yield to 36% is shown, which indicates the decrease in the negative effect of drought on the formation of spring wheat yield when using foliar processing of plants.


1992 ◽  
Vol 6 (1) ◽  
pp. 129-135 ◽  
Author(s):  
David L. Barton ◽  
Donald C. Thill ◽  
Bahman Shafii

The effect of barley seeding rate and row spacing, and triallate, diclofop, and difenzoquat herbicide rate on barley grain yield and quality, and wild oat control were evaluated in field experiments near Bonners Ferry, Idaho, in 1989 and 1990. The purpose of the study was to develop integrated control strategies for wild oat in spring barley. Barley row spacing (9 and 18 cm) did not affect barley grain yield. Barley grain yield was greatest when barley was seeded at 134 or 201 kg ha–1compared to 67 kg ha–1. Wild oat control increased as wild oat herbicide rate increased and barley grain yield was greatest when wild oat herbicides were applied. However, barley grain yield was similar when wild oat biomass was reduced by either 65 or 85% by applications of half and full herbicide rates, respectively. Net return was greatest when the half rate of herbicide was applied to 100 wild oat plants per m2and was greatest when half or full herbicide rates were applied to 290 wild oat plants per m2. Net return increased when the seeding rate was increased to 134 or 201 kg ha–1when no herbicide was applied and when 290 wild oat plants per m2were present.


2002 ◽  
Vol 82 (1) ◽  
pp. 53-65 ◽  
Author(s):  
W. J. Bullied ◽  
M. H. Entz ◽  
S. R. Smith, Jr. ◽  
K. C. Bamford

Single-year hay alfalfas (Medicago sativa L.), berseem (Trifolium alexandrinum L.) and red clovers (Trifolium pratense L.), chickling vetch (Lathyrus sativus L.) and lentil (Lens culinaris Medik.) were evaluated for rotational yield and N benefits to the following first-year wheat (Triticum aestivum L.) and second-year barley (Hordeum vulgare L.) crops. Field experiments were initiated in 1997 and 1998 on a Riverdale silty clay soil at Winnipeg, Manitoba. Yield and N content of the following wheat crop were increased following legumes compared to wheat following a canola control. Wheat yield and N content averaged 2955 kg ha–1 and 76.1 kg ha–1, respectively, following the chickling vetch and lentil, 2456 kg ha–1 and 56.4 kg ha–1 following single-year hay legumes, compared with 1706 kg ha–1 and 37.9 kg ha–1 following canola. Non-dormant alfalfas (dormancy rating of eight or greater) contributed to larger grain yields than the dormant alfalfas only in the first year of each experiment. The chickling vetch and lentil provided similar or higher subsequent crop yields and N content for 2 yr compared to a canola control or fallow treatment. This study shows that some increase in yield can be achieved by using a single-year alfalfa hay crop instead of fallow; however, exclusive green manuring of chickling vetch and lentil crops can produce the most increase in yield and N uptake in subsequent crops. Key words: Alfalfa (single-year), legumes (annual), green manure, nitrogen, cropping system


1981 ◽  
Vol 96 (3) ◽  
pp. 623-634 ◽  
Author(s):  
Margaret A. Ford ◽  
R. B. Austin ◽  
W. J. Angus ◽  
G. C. M. Sage

SUMMARYThirty-eight spring wheat genotypes of north temperate or low latitude origin, all reasonably well adapted to the English environment, were grown in controlled environments providing the four combinations of 10 and 14 h photoperiods and temperatures of 8 and 16 °C for 6 weeks. They were then transferred to a glasshouse to assess their responses to these treatments. In separate experiments the responses of the genotypes to vernalization for 2 and 4 weeks at 2 and 8 °C were compared with unvernalized controls. The genotypes were also compared in field experiments from early, intermediate or late sowing over 3 years.Both high temperatures and long days hastened ear emergence. At the higher temperature more leaves and spikelets were produced on the main stem while in long days the plants had fewer leaves and spikelets.Most genotypes of north temperate and low latitude origin were responsive to photoperiod but not to the vernalization treatments. As a group, the low latitude ones were as responsive as the north temperate group. Five genotypes of north temperate origin were responsive to vernalization but not to photoperiod and were designated as ‘winter’ ones. Pitic 62 and Hork, from low latitudes, were responsive to vernalization and Hork was unique in also being responsive to photoperiod. The main difference between the north temperate and low latitude genotypes was in time to ear emergence and it is suggested that these differences were due to the effects of earliness genes as distinct from those determining photoperiodic response.Taking all genotypes individually there were no correlations between yield or its sensitivity to sowing date and any of the attributes measured in controlled environments. However, considering class means, the winter genotypes were the latest to reach ear emergence in the field, and their yields, while greatest from the earliest sowings, were proportionally more depressed by late sowing than the others of the north temperate origin. Thus, it may be unwise for plant breeders to incorporate a vernalization response in spring wheat varieties unless genes for ‘earliness’ are also included. The low latitude class gave only slightly lower yields than the north temperate class.It is concluded that genes other than those controlling responses to photoperiod, temperature and vernalization were more important determinants of the differences in yield among this set of genotypes.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


Sign in / Sign up

Export Citation Format

Share Document