The diverse bioactivity of α-mangostin and its therapeutic implications

2021 ◽  
Vol 13 (19) ◽  
pp. 1679-1694
Author(s):  
Tejashri Chavan ◽  
Aaron Muth

α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.

2005 ◽  
Vol 52 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Jessy Deshane ◽  
Marcienne Wright ◽  
Anupam Agarwal

Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functions associated with HO-1 are attributable to one or more of its degradation products. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli including heme and this inducible nature of HO-1 signifies its importance in several pathophysiological disease states. The beneficial role of HO-1 has been implicated in several clinically relevant disease states involving multiple organ systems as well as significant biological processes such as ischemia-reperfusion injury, inflammation/immune dysfunction and transplantation. HO-1 has thus emerged as a key target molecule with therapeutic implications.


2013 ◽  
pp. 1642-1666
Author(s):  
Swadha Anand ◽  
Debasisa Mohanty

Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases like Polyketide Synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) which utilize a thiotemplate mechanism similar to that for fatty acid biosynthesis. Availability of complete genome sequences for an increasing number of microbial organisms has provided opportunities for using in silico genome mining to decipher the secondary metabolite natural product repertoire encoded by these organisms. Therefore, in recent years there have been major advances in development of computational methods which can analyze genome sequences to identify genes involved in secondary metabolite biosynthesis and help in deciphering the putative chemical structures of their biosynthetic products based on analysis of the sequence and structural features of the proteins encoded by these genes. These computational methods for deciphering the secondary metabolite biosynthetic code essentially involve identification of various catalytic domains present in this PKS/NRPS family of enzymes; a prediction of various reactions in these enzymatic domains and their substrate specificities and also precise identification of the order in which these domains would catalyze various biosynthetic steps. Structural bioinformatics analysis of known secondary metabolite biosynthetic clusters has helped in formulation of predictive rules for deciphering domain organization, substrate specificity, and order of substrate channeling. In this chapter, the progress in development of various computational methods is discussed by different research groups, and specifically, the utility in identification of novel metabolites by genome mining and rational design of natural product analogs by biosynthetic engineering studies.


Author(s):  
Swadha Anand ◽  
Debasisa Mohanty

Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases like Polyketide Synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) which utilize a thiotemplate mechanism similar to that for fatty acid biosynthesis. Availability of complete genome sequences for an increasing number of microbial organisms has provided opportunities for using in silico genome mining to decipher the secondary metabolite natural product repertoire encoded by these organisms. Therefore, in recent years there have been major advances in development of computational methods which can analyze genome sequences to identify genes involved in secondary metabolite biosynthesis and help in deciphering the putative chemical structures of their biosynthetic products based on analysis of the sequence and structural features of the proteins encoded by these genes. These computational methods for deciphering the secondary metabolite biosynthetic code essentially involve identification of various catalytic domains present in this PKS/NRPS family of enzymes; a prediction of various reactions in these enzymatic domains and their substrate specificities and also precise identification of the order in which these domains would catalyze various biosynthetic steps. Structural bioinformatics analysis of known secondary metabolite biosynthetic clusters has helped in formulation of predictive rules for deciphering domain organization, substrate specificity, and order of substrate channeling. In this chapter, the progress in development of various computational methods is discussed by different research groups, and specifically, the utility in identification of novel metabolites by genome mining and rational design of natural product analogs by biosynthetic engineering studies.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2018 ◽  
Vol 25 (30) ◽  
pp. 3560-3576 ◽  
Author(s):  
Massimo Tosolini ◽  
Paolo Pengo ◽  
Paolo Tecilla

Natural and synthetic anionophores promote the trans-membrane transport of anions such as chloride and bicarbonate. This process may alter cellular homeostasis with possible effects on internal ions concentration and pH levels triggering several and diverse biological effects. In this article, an overview of the recent results on the study of aniontransporters, mainly acting with a carrier-type mechanism, is given with emphasis on the structure/activity relationship and on their biological activity as antibiotic and anticancer agents and in the development of new drugs for treating conditions derived from dysregulation of natural anion channels.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-407 ◽  
Author(s):  
Zhaojun Sheng ◽  
Siyuan Ge ◽  
Min Gao ◽  
Rongchao Jian ◽  
Xiaole Chen ◽  
...  

Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.) of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl groups. With embelin as the lead compound, more than one hundred derivatives have been reported. Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP) with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various cancers has been extensively studied. In addition, these compounds display a variety of other biological effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity. This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives. Their cellular mechanisms of action and prospects in the research and development of new drugs are also discussed.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3745
Author(s):  
Dittu Suresh ◽  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Daniel Wenholz ◽  
Theerthankar Das ◽  
...  

Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.


2016 ◽  
pp. 297-315
Author(s):  
Ugochukwu O. Egolum ◽  
Daniel J. Lenihan

Sign in / Sign up

Export Citation Format

Share Document