A New Generation of Surface-Treated Car Body Steel with Improved Tensile Strength and High Stretch Forming Ability

1999 ◽  
Author(s):  
Rolf Bode ◽  
Bernhard Engl ◽  
Gerd Hartmann ◽  
Ilse Heckelmann
Author(s):  
M. Chomiak

Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.


2021 ◽  
pp. 002199832110417
Author(s):  
Wei Chen ◽  
Yifan Wang ◽  
Kun Zhang ◽  
Fujun Xu

Carbon nanotube (CNT) fiber/yarn reinforced composites are considered as a new generation of advanced materials for applications in aerospace and space industry. In this study, two types of CNT composite yarns were produced by twisting CNT films and infiltrating with thermoset epoxy (EP) and thermoplastic poly vinyl alcohol (PVA) resins. The tensile strength of CNT/PVA and CNT/EP composite yarn was 409.91 MPa and 206.87 MPa, much higher than that of pure CNT yarn (129.94 MPa). After mono-cryogenic condition, the mechanical and electrical properties of CNT/EP and CNT/PVA composite yarns were both enhanced due to the structure reorder of the CNT bundles and improvement of interfacial bonding. However, after 60 times cyclic-cryogenic conditions, CNT/EP composite yarn showed a ∼10% degradation of tensile strength; while CNT/PVA composite yarn exhibited 6% increment. This study provides fundamental data of the CNT reinforced thermoset and thermoplastic composite yarns for their practical applications in cryogenic environment.


2014 ◽  
Vol 566 ◽  
pp. 232-237
Author(s):  
H. Ambarita ◽  
M. Daimaruya ◽  
H. Fujiki

The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a lap bolted joint used in the suspension parts of a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behaviour and fracture of the jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a lap bolted joint in cars is complicated, for simplifying it is classified into the shear fracture and the extractive fracture of jointed steel plates. Three kinds of steel plates, i.e., common steel with the tensile strength of 270 MPa and two high tensile strength steels with the tensile strength of 440 and 590 MPa level used for vehicles, are examined. In the impact shear test, the specimens are made of two plates and jointed by a bolt, and in the impact extractive test the specimens are made of a plate and drilled in the centre for a bolt. The impact shear test of jointed steel plates of lap bolted joints is performed using a modified split Hopkinson bar apparatus, while the impact extractive one is performed using one-bar method. Numerical simulations by a FEM code LS-DYNA are also carried out in order to understand the mechanism of shearing and extractive fractures process of jointed steel plates. The obtained results suggest that a stress-based fracture criterion may be developed for the impact shearing and extractive fractures of jointed steel plates of lap bolted joints used in a car body.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1520
Author(s):  
Salem Mohammed Aldosari ◽  
Sameer Rahatekar

Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres.


Author(s):  
Paweł SKOCZYLAS ◽  
Zbigniew GULBINOWICZ ◽  
Olgierd GOROCH ◽  
Katarzyna BARCZ ◽  
Mieczysław KACZOROWSKI

The subject of the work discussed herein and carried out as a part of the Polish National Centre of Research and Development project titled ”Development and implementation of critical technology demonstrators for the new generation of 120 mm tank artillery ammunition” are the results of a research into the influence of LPS (Liquid Phase Sintering) parameters and heat treatment on the mechanical properties of W91Ni6Co3 and W91Ni6Co2.25Fe0.75 alloys, designated PR200 and PR201, respectively. The alloys, as LPS-processed and heat treated, were tested on a strength testing machine to determine their tensile strength (Rm), proof stress (Rp0.2) and elongation (A5). The analysis of the test results resulted in a proposal of manufacturing process parameters to have the alloys tested develop specified mechanical properties. It was found the ternary alloy with chemical composition W91Ni6Co3 and designated PR200 was more promising in the feasibility of producing specified mechanical properties. The alloy, once sintered and heat treated in two stages, could facilitate production of a material with a tensile strength Rm>1400 MPa, a yield strength Rp0.2 > 1350 MPa, a minimum elongation of 11%, and an impact strength > 115 J/cm2.


Author(s):  
Nazrin Fathima Fazil M ◽  
C.J. Chitra

        Self-compacting concrete (SCC) refers to high strength concrete which will compact under its own weight and does not require external vibration. This paper gives a review on the journals to study the effect of metakaoiln in SCC. The metakaolin is used as a replacement of cement and it is obtained from natural Kaolin clay. Metakaolin helps to increase the compressive strength, spilt tensile strength, flexural strength and also the fresh properties. The use super plasticizer greatly improves pump-ability and the slump value. GLENIUM B233 is a new generation based super plasticizer which is based on modified polycarboxylic ether. The fresh properties such as pump ability and workability and the durability properties of super plasticizer in SCC with metakaolin are discussed. Keywords: Self-Compacting Concrete, Metakaolin, GLENIUM B233, Superplasticizer, Polycarboxylic Ether


Self-compacting concrete is one that is flow able by its own. The SCC is suitable for placing in dense reinforcement structures. It is a new generation performance concrete known for its outstanding deformity and high resistance to bleeding. The concrete is frail material which is comparatively tough in compression but fragile in tension. The tensile strength of concrete is improved by addition of fibers in the concrete mix. The addition of such fibers has negative consequence on the workability of concrete. Various types of fibers are used in concrete to provide the higher flexural strength and better tensile strength. In this research steel fibers are used to provide a better strength as compared with normal reinforced concrete. Steel fiber in SCC significantly improves its flexural strength, improved tensile properties, reduce cracking and improve durability. In this research the investigation of steel fiber in SCC to enhance the strength properties of SCC. The objective of the study was to determine different properties of SCC with steel fiber at different proportions. The experimental investigation was took on the freshly mixed and hardened properties of SCC of various mix with the different variations of fiber 0.25%, 0.50%, 0.75% and 1% by using Viscosity Modified Agent (VMA) 1.5% of cement material by using M25 grade of concrete. In this research a series of tests were carried out for workability like slump cone test, U funnel, V funnel, L box test on SCC to check freshly mix properties like flow-ability, filling-ability, and passing-ability and hardened properties like compressive strength, split-tensile strength and flexural strength respectively and test were conducted at the age of 7Days, 14Days, 28Days on the SCC. The advantage of adding steel fiber in self-compacting concrete is that it enhances its overall strength.


2021 ◽  
Author(s):  
Sarah Tedesco ◽  
Ming Shi ◽  
Jason Coryell ◽  
Qi Lu ◽  
Jianfeng Wang

Abstract Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.


2014 ◽  
Vol 15 (3) ◽  
pp. 315-318
Author(s):  
Mansour K Assery ◽  
Zeeshan H Ahmad ◽  
Anil Sukumaran ◽  
Mohammed A Binmgren ◽  
Samah O Alsaleem ◽  
...  

Abstract Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base. How to cite this article Hashem M, Binmgren MA, Alsaleem SO, Vellappally S, Assery MK, Sukumaran A. The Impact of Polymerization Method on Tensile Bond Strength between Denture Base and Acrylic Teeth. J Contemp Dent Pract 2014; 15(3):315-318.


Sign in / Sign up

Export Citation Format

Share Document