scholarly journals A review of the possible prognostic values of biochemical changes in patients with SARS-CoV-2 infections

2021 ◽  
Vol 22 (4) ◽  
pp. 430-438
Author(s):  
B. Adegboro ◽  
M. Babazhitsu ◽  
N.I. Mba

Because of high mortality and long-term hospital stay among patients with SARS-CoV-2 infections, it is important to search for biochemical changes in different organs and systems that could be useful in diagnosis and prognosis of COVID-19. We conducted a literature search of online databases including PubMed, Web of Science, Scopus and Google scholar for relevant materials on biochemical changes in SARS-COV-2 infections published between December 2019 and March 2021. The review shows that SARS-COV-2 uses the angiotensin converting enzyme 2 (ACE2) for attachment and entry into host cells. These ACE2 are abundantly expressed by the epithelial cells of the respiratory tract and moderately expressed by the epithelial cells of the esophagus, stomach, duodenum, ileum, rectum, cholangiocytes, liver  hepatocytes, pancreatic beta cells, and kidney tubular cells. This explains the systemic nature of SARS-COV-2 infection, and the high morbidity and mortality associated with COVID-19. Although, tests to assess biochemical changes are not specific enough for the diagnosis of SARS-CoV-2 infection, they may be useful for predicting outcome of COVID-19. This review highlights biochemical parameters that are significantly elevated or reduced in SARS-COV-2 infections, and which can be used as predictive factors of the severity and prognosis in COVID-19 patients.   French title: Un examen des valeurs pronostiques possibles des changements biochimiques chez les patients infectés par le SRAS-CoV-2 En raison de la mortalité élevée et du séjour à l'hôpital à long terme chez les patients infectés par le SRAS-CoV-2, il est important de rechercher des changements biochimiques dans différents organes et systèmes qui pourraient être utiles pour le diagnostic et le pronostic de COVID-19. Nous avons effectué une recherche documentaire dans des bases de données en ligne, notamment PubMed, Web of Science, Scopus et Google Scholar, pour rechercher des documents pertinents sur les changements biochimiques dans les infections par le SRAS-COV-2 publiés entre décembre 2019 et mars 2021. La revue montre que le SRAS-COV-2 utilise l'enzyme de conversion de l'angiotensine 2 (ACE2) pour la fixation et l'entrée dans les cellules hôtes. Ces ACE2 sont abondamment exprimés par les cellules épithéliales des voies respiratoires et modérément exprimés par les cellules épithéliales de l'oesophage, de l'estomac, du duodénum, de l'iléon, du rectum, des cholangiocytes, des hépatocytes du foie, des cellules bêta pancréatiques et des cellules tubulaires rénales. Cela explique la nature systémique de l'infection par le SRAS-COV-2, ainsi que la morbidité et la mortalité élevées associées au COVID-19. Bien que les tests pour évaluer les changements biochimiques ne soient pas assez spécifiques pour le diagnostic de l'infection par le SRAS-CoV-2, ils peuvent être utiles pour prédire l'issue du COVID-19. Cette revue met en évidence les paramètres biochimiques qui sont significativement élevés ou réduits dans les infections par le SRAS-COV-2, et qui peuvent être utilisés comme facteurs prédictifs de la gravité et du pronostic chez les patients COVID-19.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Guanrong Peng ◽  
Zhenhua Guan ◽  
Yunfei Hou ◽  
Jiaxiang Gao ◽  
Wenqun Rao ◽  
...  

Abstract Background Hip fracture is common and carries high morbidity and mortality; thus, it has become a vital concern. We aim to analyse the present status, worldwide trends in hip fracture and state of clinical research. Methods Publications from 2000 to 2019 were retrieved from the Web of Science database and analysed using a bibliometric methodology. VOSviewer software was utilised for analysis. Results In total, 6139 publications were included, and publications increased annually from 152 in 2000 to 592 in 2019. U.S. researchers have produced the most publications, the highest H-index and the greatest number of citations. Osteoporosis International has published the most papers on the topic. Leading researchers, contributing institutions, their cooperative relationships and scientific masterpieces have been identified. The publications can be divided into five clusters: ‘mortality’, ‘surgical management’, ‘rehabilitation’, ‘osteoporosis’ and ‘epidemiology’. A clear developing trend was described, which began with fracture epidemiology and prevention, transitioned to perioperative management, orthogeriatric care and patient safety and then to functional recovery, disease burden and national audits in recent times. Conclusions Hip fractures result in conditions that extend far beyond orthopaedics concerning epidemiology and preventive medicine, internal medicine and endocrinology, as well as critical care and gerontology. Interest, research and publications are on the rise.


2021 ◽  
Vol 22 (14) ◽  
pp. 7669
Author(s):  
Cassio Luiz Coutinho Almeida-da-Silva ◽  
Harmony Matshik Dakafay ◽  
Kaitlyn Liu ◽  
David M. Ojcius

A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.


2010 ◽  
Vol 79 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Min Wu ◽  
Huang Huang ◽  
Weidong Zhang ◽  
Shibichakravarthy Kannan ◽  
Andrew Weaver ◽  
...  

ABSTRACTAlthough DNA repair proteins in bacteria are critical for pathogens' genome stability and for subverting the host defense, the role of host DNA repair proteins in response to bacterial infection is poorly defined. Here, we demonstrate, for the first time, that infection with the Gram-negative bacteriumPseudomonas aeruginosasignificantly altered the expression and enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1) in lung epithelial cells. Downregulation of OGG1 by a small interfering RNA strategy resulted in severe DNA damage and cell death. In addition, acetylation of OGG1 is required for host responses to bacterial genotoxicity, as mutations of OGG1 acetylation sites increased Cockayne syndrome group B (CSB) protein expression. These results also indicate that CSB may be involved in DNA repair activity during infection. Furthermore, OGG1 knockout mice exhibited increased lung injury after infection withP. aeruginosa, as demonstrated by higher myeloperoxidase activity and lipid peroxidation. Together, our studies indicate thatP. aeruginosainfection induces significant DNA damage in host cells and that DNA repair proteins play a critical role in the host response toP. aeruginosainfection, serving as promising targets for the treatment of this condition and perhaps more broadly Gram-negative bacterial infections.


2001 ◽  
Vol 27 (2) ◽  
pp. 133-144 ◽  
Author(s):  
R Perfetti ◽  
H Hui ◽  
K Chamie ◽  
S Binder ◽  
M Seibert ◽  
...  

The Arg64 beta(3)-adrenergic receptor (beta(3)AR) variant is associated with an earlier age of onset of diabetes and lower levels of insulin secretion in humans. The aims of this study were to investigate whether beta(3)AR is expressed by islet cells, if receptor binding affects insulin secretion and, finally, if the beta(3)AR Arg64 variant induces abnormal insulin secretory activity. Human pancreas extracts were subjected to RT-PCR, Western blotting and immunostaining analyses. DNA sequencing and Western blotting demonstrated that the beta(3)AR gene is transcribed and translated in the human pancreas; immunostaining showed that it is expressed by the islets of Langerhans. Cultured rat beta-cells responded to human beta(3)AR agonists in a dose- and time-dependent manner. Transfection of cultured rat beta-cells with the wild-type human beta(3)AR produced an increased baseline and ligand-dependent insulin secretion compared with parental cells. On the other hand, cells transfected with the Arg64 variant of the beta(3)AR secreted less insulin, both spontaneously and after exposure to human beta(3)AR agonists. Furthermore, while transfection with the wild-type beta(3)AR preserved the glucose-dependent secretion of insulin, expression of the variant receptor rendered the host cells significantly less responsive to glucose. In summary, cells express the beta(3)AR, and its activation contributes to the regulation of insulin secretion. These findings may help explain the low levels of insulin secretion in response to an i.v. glucose tolerance test observed in humans carrying the Arg64 polymorphism.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 753
Author(s):  
Sneha Singh ◽  
Onkar B. Sawant ◽  
Shahzad I. Mian ◽  
Ashok Kumar

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1β) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


2021 ◽  
Author(s):  
Ewa Jasińska ◽  
Agnieszka Bogut ◽  
Agnieszka Magryś ◽  
Alina Olender

Abstract Purpose: Determination of the association between ica genes and phenotypic biofilm formation in staphylococcal isolates involved in conjunctivitis, their antibiotic resistance as well as detection of selected virulence characteristics: adhesion to epithelial cells and in vitro cytotoxicity.Methods: The study included 26 Staphylococcus aureus (SA) and 26 Staphylococcus epidermidis (SE) isolates. The presence of icaAD genes and ica operon was determined by the PCR assay. Phenotypic biofilm formation was verified using the microtiter plate assay. Antibiotic resistance was performed using the disc diffusion method. Staphylococcal ability to attach to host cells was assessed by flow cytometry. Cytotoxicity on epithelial cells was evaluated by LDH assay.Results: The ica genes were detected in 26.9% of SE and in 42.3% of SA isolates. Only 15.3% of isolates (SE) were positive for both the icaAD and the ica operon. Phenotypically, 19.2% of SE isolates were strong biofilm producers, among which three were both icaAD- and ica operon-positive. 26.9% of SA isolates were strong biofilm producers. Methicillin resistance (MR) was detected in 34.6% of SE and 26.9% of SA isolates. 75% of MR isolates were multidrug resistant. SA isolates adhered to host cells more extensively than SE. SA isolates released higher level of LDH than SE.Conclusions: Adherence abilities were commonly observed in staphylococci associated with conjunctivitis. However, low prevalence of isolates positive for a complete and functional ica locus and low prevalence of strong biofilm producers was detected. SA adhered to a greater extent to eukaryotic cells than SE and were more cytotoxic.


2018 ◽  
Vol 50 (5) ◽  
pp. 1903-1915 ◽  
Author(s):  
Qianlin Xia ◽  
Tao Ding ◽  
Guihong Zhang ◽  
Zehuan Li ◽  
Ling Zeng ◽  
...  

Background/Aims: Prostate cancer (PCa) is one of the main cancers that damage males’ health severely with high morbidity and mortality, but there is still no ideal molecular marker for the diagnosis and prognosis of prostate cancer. Methods: To determine whether the differentially expressed circRNAs in prostate cancer can serve as novel biomarkers for prostate cancer diagnosis, we screened differentially expressed circRNAs using SBC-ceRNA array in 4 pairs of prostate tumor and paracancerous tissues. A circRNA-miRNA-mRNA regulatory network for the differential circRNAs and their host genes was constructed by Cytoscape3.5.1 software. Quantitative real-time polymerase chain reaction analysis (qRT-PCR) was performed to confirm the microarray data. Results: We found 1021 differentially expressed circRNAs in PCa tumor using SBC-ceRNA array and confirmed the expression of circ_0057558, circ_0062019 and SLC19A1 in PCa cell lines and tumor tissues through qRT-PCR analysis. We demonstrated that combination of PSA level and two differentially expressed circRNAs showed significantly increased AUC, sensitivity and specificity (0.938, 84.5% and 90.9%, respectively) than PSA alone (AUC of serum PSA was 0.854). Moreover, circ_0057558 was correlated positively with total cholesterol. The functional network of circRNA-miRNA-mRNA analysis showed that circ_0057558 and circ_0034467 regulated miR-6884, and circ_0062019 and circ_0060325 regulated miR-5008. Conclusion: Our results demonstrated that differentially expressed circRNAs (circ_0062019 and circ_0057558) and host gene SLC19A1 of circ_0062019 could be used as potential novel biomarkers for prostate cancer.


1995 ◽  
Vol 9 (1) ◽  
pp. 31-36 ◽  
Author(s):  
B.B. Finlay

The interactions that occur between pathogenic micro-organisms and their host cells are complex and intimate. We have used two enteric pathogens, Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC), to examine the interactions that occur between these organisms and epithelial cells. Although these are enteric pathogens, the knowledge and techniques developed from these systems may be applied to the study of dental pathogens. Both S. typhimurium and EPEC disrupt epithelial monolayer integrity, although by different mechanisms. Both pathogens cause loss of microvilli and re-arrangement of the underlying host cytoskeleton. Despite these similarities, both organisms send different signals into the host cell. EPEC signal transduction involves generation of intracellular calcium and inositol phosphate fluxes, and activation of host tyrosine kinases that results in tyrosine phosphorylation of a 90-kDa host protein. Bacterial mutants have been identifed that are deficient in signaling to the host. We propose a sequence of events that occur when EPEC interacts with epithelial cells. Once inside a host cell, S. typhimurium remains within a vacuole. To define some of the parameters of the intracellular environment, we constructed genetic fusions of known genes with lacZ, and used these fusions as reporter probes of the intracellular vacuolar environment. We have also begun to examine the bacterial and host cell factors necessary for S. typhimurium to multiply within epithelial cells. We found that this organism triggers the formation of novel tubular lysosomes, and these structures are linked with intracellular replication.


2015 ◽  
Vol 308 (3) ◽  
pp. L270-L286 ◽  
Author(s):  
Behzad Yeganeh ◽  
Saeid Ghavami ◽  
Andrea L. Kroeker ◽  
Thomas H. Mahood ◽  
Gerald L. Stelmack ◽  
...  

Subcellular trafficking within host cells plays a critical role in viral life cycles, including influenza A virus (IAV). Thus targeting relevant subcellular compartments holds promise for effective intervention to control the impact of influenza infection. Bafilomycin A1(Baf-A1), when used at relative high concentrations (≥10 nM), inhibits vacuolar ATPase (V-ATPase) and reduces endosome acidification and lysosome number, thus inhibiting IAV replication but promoting host cell cytotoxicity. We tested the hypothesis that much lower doses of Baf-A1also have anti-IAV activity, but without toxic effects. Thus we assessed the antiviral activity of Baf-A1at different concentrations (0.1–100 nM) in human alveolar epithelial cells (A549) infected with IAV strain A/PR/8/34 virus (H1N1). Infected and mock-infected cells pre- and cotreated with Baf-A1were harvested 0–24 h postinfection and analyzed by immunoblotting, immunofluorescence, and confocal and electron microscopy. We found that Baf-A1had disparate concentration-dependent effects on subcellular organelles and suppressed affected IAV replication. At concentrations ≥10 nM Baf-A1inhibited acid lysosome formation, which resulted in greatly reduced IAV replication and release. Notably, at a very low concentration of 0.1 nM that is insufficient to reduce lysosome number, Baf-A1retained the capacity to significantly impair IAV nuclear accumulation as well as IAV replication and release. In contrast to the effects of high concentrations of Baf-A1, very low concentrations did not exhibit cytotoxic effects or induce apoptotic cell death, based on morphological and FACS analyses. In conclusion, our results reveal that low-concentration Baf-A1is an effective inhibitor of IAV replication, without impacting host cell viability.


2019 ◽  
Author(s):  
Mohammad R. Khosravi ◽  
Varun G. Menon

This paper presents a case report on detecting hijacked journals. Towards identification of a fake journal website and preventing a hijacked paper, we use different tools including Google Scholar - as an altmetric tool, Web of Science (WoS) and Scopus, both as scientometric databases, to distinguish fake website from a legal (printed) journal. Our evaluation shows that analysis of a doubtful website should be done not just using Google Scholar. In fact, use of scientometric tools for tracking prior publications of the journal is compulsory. Main result of this case study is that in some uncommon cases, fake websites may convince scientometric databases in order to be fully/partially indexed along with an abstracting of their hijacked papers. Therefore as a results, we should check both WoS and Scopus for verifying a fake website.


Sign in / Sign up

Export Citation Format

Share Document