Insights into the Role of Quorum Sensing in Food Spoilage

2008 ◽  
Vol 71 (7) ◽  
pp. 1510-1525 ◽  
Author(s):  
MOHAMMED SALIM AMMOR ◽  
CHRISTOS MICHAELIDIS ◽  
GEORGE-JOHN E. NYCHAS

Food spoilage is a consequence of the degrading enzymatic activity of some food-associated bacteria. Several proteolytic, lipolytic, chitinolytic, and pectinolytic activities associated with the deterioration of goods are regulated by quorum sensing, suggesting a potential role of such cell-to-cell communication in food spoilage. Here we review quorum sensing signaling molecules and methods of their detection and quantification, and we provide insights into the role of quorum sensing in food spoilage and address potential quorum sensing inhibitors that might be used as biopreservatives.

2012 ◽  
Vol 78 (16) ◽  
pp. 5473-5482 ◽  
Author(s):  
Panagiotis N. Skandamis ◽  
George-John E. Nychas

ABSTRACTFood spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling moleculesper seand to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might “mislead” the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the “gray” or “black” areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


2020 ◽  
Vol 66 (7) ◽  
pp. 447-454 ◽  
Author(s):  
Andrea Chane ◽  
Yvann Bourigault ◽  
Mathilde Bouteiller ◽  
Yoan Konto-Ghiorghi ◽  
Annabelle Merieau ◽  
...  

The geocaulosphere is home to microbes that establish communication between themselves and others that disrupt them. These cell-to-cell communication systems are based on the synthesis and perception of signaling molecules, of which the best known belong to the N-acyl-homoserine lactone (AHL) family. Among indigenous bacteria, certain Gram-positive actinobacteria can sense AHLs produced by soft-rot Gram-negative phytopathogens and can degrade the quorum-sensing AHL signals to impair the expression of virulence factors. We mimicked this interaction by introducing dual-color reporter strains suitable for monitoring both the location of the cells and their quorum-sensing and -quenching activities, in potato tubers. The exchange of AHL signals within the pathogen’s cell quorum was clearly detected by the presence of bright green fluorescence instead of blue in a portion of Pectobacterium-tagged cells. This phenomenon in Rhodococcus cells was accompanied by a change from red fluorescence to orange, showing that the disappearance of signaling molecules is due to rhodococcal AHL degradation rather than the inhibition of AHL production. Rhodococci are victorious in this fight for the control of AHL-based communication, as their jamming activity is powerful enough to prevent the onset of disease symptoms.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Yu-Xi Zhu ◽  
Zhang-Rong Song ◽  
Shi-Mei Huo ◽  
Kun Yang ◽  
Xiao-Yue Hong

ABSTRACT Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related operational taxonomic units dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.


2007 ◽  
Vol 362 (1483) ◽  
pp. 1149-1163 ◽  
Author(s):  
Maria Sanchez-Contreras ◽  
Wolfgang D Bauer ◽  
Mengsheng Gao ◽  
Jayne B Robinson ◽  
J Allan Downie

Legume-nodulating bacteria (rhizobia) usually produce N -acyl homoserine lactones, which regulate the induction of gene expression in a quorum-sensing (or population-density)-dependent manner. There is significant diversity in the types of quorum-sensing regulatory systems that are present in different rhizobia and no two independent isolates worked on in detail have the same complement of quorum-sensing genes. The genes regulated by quorum sensing appear to be rather diverse and many are associated with adaptive aspects of physiology that are probably important in the rhizosphere. It is evident that some aspects of rhizobial physiology related to the interaction between rhizobia and legumes are influenced by quorum sensing. However, it also appears that the legumes play an active role, both in terms of interfering with the rhizobial quorum-sensing systems and responding to the signalling molecules made by the bacteria. In this article, we review the diversity of quorum-sensing regulation in rhizobia and the potential role of legumes in influencing and responding to this signalling system.


2016 ◽  
Vol 114 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Nina M. Høyland-Kroghsbo ◽  
Jon Paczkowski ◽  
Sampriti Mukherjee ◽  
Jenny Broniewski ◽  
Edze Westra ◽  
...  

CRISPR-Cas are prokaryotic adaptive immune systems that provide protection against bacteriophage (phage) and other parasites. Little is known about how CRISPR-Cas systems are regulated, preventing prediction of phage dynamics in nature and manipulation of phage resistance in clinical settings. Here, we show that the bacteriumPseudomonas aeruginosaPA14 uses the cell–cell communication process, called quorum sensing, to activatecasgene expression, to increase CRISPR-Cas targeting of foreign DNA, and to promote CRISPR adaptation, all at high cell density. This regulatory mechanism ensures maximum CRISPR-Cas function when bacterial populations are at highest risk for phage infection. We demonstrate that CRISPR-Cas activity and acquisition of resistance can be modulated by administration of pro- and antiquorum-sensing compounds. We propose that quorum-sensing inhibitors could be used to suppress the CRISPR-Cas adaptive immune system to enhance medical applications, including phage therapies.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3088
Author(s):  
Laura Quintieri ◽  
Leonardo Caputo ◽  
Milena Brasca ◽  
Francesca Fanelli

Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 777 ◽  
Author(s):  
Debora F. Veliz-Vallejos ◽  
Akitomo Kawasaki ◽  
Ulrike Mathesius

Bacteria use quorum sensing signaling for cell-to-cell communication, which is also important for their interactions with plant hosts. Quorum sensing via N-acyl-homoserine lactones (AHLs) is important for successful symbioses between legumes and nitrogen-fixing rhizobia. Previous studies have shown that plant hosts can recognize and respond to AHLs. Here, we tested whether the response of the model legume Medicago truncatula to AHLs from its symbiont and other bacteria could be modulated by the abundance and composition of plant-associated microbial communities. Temporary antibiotic treatment of the seeds removed the majority of bacterial taxa associated with M. truncatula roots and significantly altered the effect of AHLs on nodule numbers, but lateral root density, biomass, and root length responses were much less affected. The AHL 3-oxo-C14-HSL (homoserine lactone) specifically increased nodule numbers but only after the treatment of seeds with antibiotics. This increase was associated with increased expression of the early nodulation genes RIP1 and ENOD11 at 24 h after infection. A 454 pyrosequencing analysis of the plant-associated bacteria showed that antibiotic treatment had the biggest effect on bacterial community composition. However, we also found distinct effects of 3-oxo-C14-HSL on the abundance of specific bacterial taxa. Our results revealed a complex interaction between plants and their associated microbiome that could modify plant responses to AHLs.


Sign in / Sign up

Export Citation Format

Share Document