Antimicrobial Resistance and Virulence Profiles of mcr-1–Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China

2020 ◽  
Vol 83 (12) ◽  
pp. 2209-2215 ◽  
Author(s):  
PING CHENG ◽  
YUQI YANG ◽  
JUNCHUAN ZHANG ◽  
FULEI LI ◽  
XIAOTING LI ◽  
...  

ABSTRACT The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1–positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1–positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1–positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1–positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1–positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10−7 to 7.57 × 10−4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. HIGHLIGHTS

2021 ◽  
Vol 14 (3) ◽  
pp. 689-695
Author(s):  
Pramualchai Ketkhao ◽  
Sukanya Thongratsakul ◽  
Pariwat Poolperm ◽  
Chaithep Poolkhet ◽  
Patamabhorn Amavisit

Background and Aim: The emerging of antimicrobial-resistant foodborne bacteria is a serious public health concern worldwide. This study was conducted to determine the association between farm management systems and antimicrobial resistance profiles of Escherichia coli isolated from conventional swine farms and natural farms. E. coli isolates were evaluated for the minimum inhibitory concentration (MIC) of 17 antimicrobials, extended-spectrum beta-lactamase (ESBL)- producing enzymes, and plasmid-mediated colistin-resistant genes. Materials and Methods: Fecal swabs were longitudinally collected from healthy pigs at three stages comprising nursery pigs, fattening pigs, and finishers, in addition to their environments. High-generation antimicrobials, including carbapenem, were selected for the MIC test. DNA samples of colistin-resistant isolates were amplified for mcr-1 and mcr-2 genes. Farm management and antimicrobial applications were evaluated using questionnaires. Results: The detection rate of ESBL-producing E. coli was 17%. The highest resistance rates were observed with trimethoprim/sulfamethoxazole (53.9%) and colistin (48.5%). All isolates were susceptible to carbapenem. Two large intensive farms that used colistin-supplemented feed showed the highest colistin resistance rates of 84.6% and 58.1%. Another intensive farm that did not use colistin showed a low colistin resistance rate of 14.3%. In contrast, a small natural farm that was free from antimicrobials showed a relatively high resistance rate of 41.8%. The majority of colistin-resistant isolates had MIC values of 8 μg/mL (49%) and ≥16 μg/mL (48%). The genes mcr-1 and mcr-2 were detected at rates of 64% and 38%, respectively, among the colistin-resistant E. coli. Conclusion: Commensal E. coli were relatively sensitive to the antimicrobials used for treating critical human infections. Colistin use was the primary driver for the occurrence of colistin resistance in swine farms having similar conventional management systems. In the natural farm, cross-contamination could just occur through the environment if farm biosecurity is not set up carefully, thus indicating the significance of farm biosecurity risk even in an antimicrobial-free farm.


2020 ◽  
Vol 19 (2) ◽  
pp. 447-453
Author(s):  
Abdulaziz Alqasim

Extra-intestinal pathogenic Escherichia coli (ExPEC) is commonly associated with causing urinary tract and bloodstream infections. Over the past two decades, the antimicrobial resistance of ExPEC has increasingly been reported [1]. Given that Saudi Arabia annually hosts mass religious events, such as Hajj, this review investigated several aspects of antimicrobial resistance of ExPEC in this country including the current prevalence of resistance and molecular epidemiology of ExPEC isolates. Generally, the overall prevalence of antibiotic resistance of ExPEC in Saudi Arabia is on increase. The current emergence of colistin resistance in ExPEC represents a major challenge to public health. Local molecular epidemiological studies have shown the dominance of E. coli sequence type 131 (E. coli ST131) over other major ExPEC STs. This is an important observation given that this clone has been associated with high multidrug resistance and extended-spectrum β-lactamases carriage. To reduce the burden of this resistance in the future, it would be crucial to avoid uncontrolled use of antibiotics in either clinical settings or animal food industry. Keywords: Extra-intestinal pathogenic Escherichia coli, Antimicrobial resistance, ST131, Saudi Arabia, Colistin resistance, Extended-spectrum β-lactamases


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1776
Author(s):  
Sang-Ik Oh ◽  
Seungmin Ha ◽  
Jae-Hee Roh ◽  
Tai-Young Hur ◽  
Jae Gyu Yoo

The prevalence of antimicrobial-resistant (AMR) Escherichia coli is typically higher in the feces of young dairy calves than in the feces of older cattle; however, the underlying factors contributing to this difference are poorly understood. In this study, AMR fecal E. coli from neonatal calves were characterized both at phenotypic and genotypic levels by individual follow-up sampling. Antimicrobial resistance profiles of E. coli isolates from the maternal colostrum were also determined. Most of the fecal AMR E. coli emerged in the calves at 2–3 days of age. The tetB was the most prevalent resistance gene detected among AMR fecal E. coli from <7-day-old calves, and was also detected in two isolates from the maternal colostrum. Weekly sampling revealed changes in the phenotype of AMR fecal E. coli as the calves aged. More than half of the fecal E. coli isolates acquired additional resistance to beta-lactams by 21–28 days of age, and minimum inhibitory concentrations were higher in ceftiofur-exposed calves than in unexposed calves. Our findings reveal the dynamic changes in AMR fecal E. coli from neonatal calves, and suggest that the feeding of colostrum and ceftiofur administration contribute to the higher prevalence of AMR E. coli in young dairy calves.


2001 ◽  
Vol 45 (10) ◽  
pp. 2716-2722 ◽  
Author(s):  
P. L. Winokur ◽  
D. L. Vonstein ◽  
L. J. Hoffman ◽  
E. K. Uhlenhopp ◽  
G. V. Doern

ABSTRACT Escherichia coli is an important pathogen that shows increasing antimicrobial resistance in isolates from both animals and humans. Our laboratory recently described Salmonellaisolates from food animals and humans that expressed an identical plasmid-mediated, AmpC-like β-lactamase, CMY-2. In the present study, 59 of 377 E. coli isolates from cattle and swine (15.6%) and 6 of 1,017 (0.6%) isolates of human E. coli from the same geographic region were resistant to both cephamycins and extended-spectrum cephalosporins. AnampC gene could be amplified with CMY-2 primers in 94.8% of animal and 33% of human isolates. Molecular epidemiological studies of chromosomal DNA revealed little clonal relatedness among the animal and human E. coli isolates harboring the CMY-2 gene. The ampC genes from 10 animal and human E. coli isolates were sequenced, and all carried an identical CMY-2 gene. Additionally, all were able to transfer a plasmid containing the CMY-2 gene to a laboratory strain of E. coli. CMY-2 plasmids demonstrated two different plasmid patterns that each showed strong similarities to previously describedSalmonella CMY-2 plasmids. Additionally, Southern blot analyses using a CMY-2 probe demonstrated conserved fragments among many of the CMY-2 plasmids identified in Salmonella andE. coli isolates from food animals and humans. These data demonstrate that common plasmids have been transferred between animal-associated Salmonella and E. coli, and identical CMY-2 genes carried by similar plasmids have been identified in humans, suggesting that the CMY-2 plasmid has undergone transfer between different bacterial species and may have been transmitted between food animals and humans.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 768
Author(s):  
Dong Chan Moon ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Su-Jeong Kim ◽  
Ji-Hyun Choi ◽  
...  

We studied the presence of the mobile colistin resistance gene mcr-1 in Escherichia coli isolates recovered from fecal and urine samples of companion animals, that were collected from South Korea in 2018 and 2019. The mcr-1 gene was detected in one colistin-resistant E. coli isolated from a diarrheic dog. The isolate exhibited additional resistance to multiple antimicrobials, including fluoroquinolones and third-generation cephalosporins. The mcr-1 carrying isolate belonged to ST160. The pulsed-field gel electrophoresis pattern of our strain differed from those ST160 E. coli strains previously identified from chickens in Korea. The mcr-1 gene was identified in the IncI2 plasmid. It was also transferred to E. coli J53 recipient strain, with a conjugation efficiency of 2.8 × 10−4. Average nucleotide identity analysis demonstrated that the mcr-1-carrying plasmid in this study was closely related to those from patients in Korea. To the best of our knowledge, this is the first report of mcr-1 carrying E. coli from a companion animal in South Korea. Our findings support One Health approach is necessary to prevent the dissemination of this high-risk gene.


2021 ◽  
pp. 2662-2669
Author(s):  
Ibrahim Z. Hassan ◽  
Buks Wandrag ◽  
Johan J. Gouws ◽  
Daniel N. Qekwana ◽  
Vinny Naidoo

Background and Aim: Antimicrobial resistance (AMR) and recently mobilized colistin resistance (mcr-1) associated colistin resistance among Escherichia coli isolates have been attributed to the overuse of antimicrobials in livestock production. E. coli remains an important pathogen, often associated with mortality and low carcass weight in poultry medicine; therefore, the need to use antimicrobials is common. The study aimed to determine the AMR profile and presence of mcr-1 and mcr-2 genes in avian pathogenic E. coli from poultry samples tested at a bacteriology laboratory for routine diagnosis. This is a first step in understanding the effectiveness of mitigation strategies. Materials and Methods: Fifty E. coli strains were assessed for resistance against ten antimicrobial drugs using broth microdilution. All isolates with a colistin minimum inhibitory concentration (MIC) of 2 μg/mL were analyzed for the presence of mcr-1 and mcr-2 genes by employing the polymerase chain reaction. For each isolate, the following farm information was obtained: farm location, type of farm, and on-farm use of colistin. Results: Sixty-eight percent of the strains were resistant to at least one antimicrobial; 44% were multiple drug-resistant (MDR). Most E. coli isolates were resistant to doxycycline (44%), trimethoprim-sulfamethoxazole (38%), ampicillin (32%), and enrofloxacin (32%). None of the E. coli strains was resistant to colistin sulfate (MIC90 of 2 μg/mL). Only one E. coli isolate held the mcr-1 gene; none carried the mcr-2 gene. Conclusion: Resistance among E. coli isolates in this study was fairly high. Resistance to commonly used antimicrobials was observed, such as doxycycline, trimethoprim-sulfamethoxazole, and enrofloxacin. Only a single E. coli strain carried the mcr-1 gene, suggesting that mcr-1 and mcr-2 genes are common among isolates in this study. The prevalence of AMR, however, suggests that farmers must implement standard biosecurity measures to reduce E. coli burden, and antimicrobial use to prolong the efficacy life span of some of these drugs.


2019 ◽  
Vol 82 (8) ◽  
pp. 1440-1448 ◽  
Author(s):  
ALESSANDRA BARLAAM ◽  
ANTONIO PARISI ◽  
ELISA SPINELLI ◽  
MARTA CARUSO ◽  
PIETRO DI TARANTO ◽  
...  

ABSTRACT Antimicrobial resistance in bacteria represents one of the most important challenges for public health worldwide. Human infections from antimicrobial-resistant bacteria can be transmitted from person to person, via the environment (especially in the hospital environment), or via handling or eating contaminated foods. Colistin is well known as a last-resort antibiotic for the treatment of human infections; a recent study performed in the People's Republic of China has revealed that colistin resistance is also conferred by the plasmid-mediated mcr-1 gene in Escherichia coli. After that discovery, further plasmid-mediated, colistin resistance genes have been detected. However, to date, only reports on E. coli carrying the mcr-1 gene (E. coli mcr-1+) in foodstuff are available. E. coli mcr-1+ has been isolated from food of animal origin and vegetables; this discovery has opened a debate among food safety experts. This review aims to provide a critical overview of the currently available scientific literature on the presence of the plasmid-mediated, colistin resistance gene E. coli mcr-1 in foodstuffs, focusing on the main implications and future perspectives for food safety.


Author(s):  
Ching-Hsun Wang ◽  
L. Kristopher Siu ◽  
Feng-Yee Chang ◽  
Sheng-Kang Chiu ◽  
Jung-Chung Lin

The molecular epidemiology and resistance mechanisms of mcr -negative colistin-resistant E. coli are not well described. In this study, a total of 11 mcr -negative colistin-resistant E. coli isolates were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2021 ◽  
Vol 9 (2) ◽  
pp. 398
Author(s):  
Dong Chan Moon ◽  
Su-Jeong Kim ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Hyun-Ju Song ◽  
...  

Colistin is considered the last resort for the treatment of multi-drug resistant Gram-negative bacterial infections. We studied colistin resistance and the mcr-1 gene carriage in Salmonella isolates recovered from food animals in South Korea between 2010 and 2018. Colistin resistance was found in 277 isolates, predominantly in Salmonella Enteritidis (57.1%) and Salmonella Gallinarum (41.9%). However, the mcr-1 gene was identified in only one colistin-resistant Salmonella Typhimurium (MIC = 16 µg/mL) isolated from a healthy pig. The mcr-1 carrying isolate presented additional resistance to multiple antimicrobials. The strain belonged to sequence type (ST)19 and carried various virulence factor genes that are associated with adhesion and invasion of Salmonella into intestinal epithelial cells, as well as its survival in macrophages. The mcr-1 gene was identified on an IncI2 plasmid and it was also transferred to the E. coli J53 recipient strain. The mcr-1-carrying plasmid (pK18JST013) in this study was closely related to that previously reported in S. Indiana (pCFSA664-3) from chicken in China. This is the first report of mcr-1 carrying S. Typhimurium in South Korea. The finding indicates the importance of regular screening for the presence of the mcr-1 gene in S. Typhimurium in food animals to prevent the spread to humans.


Sign in / Sign up

Export Citation Format

Share Document