scholarly journals Rational protein design for enhancing thermal stability of industrial enzymes

2020 ◽  
Vol 8 (1) ◽  
pp. 3-17
Author(s):  
Le Quang Anh Tuan

Enzymes possessing many excellent properties such as high selectivity, consuming less energy, and producing less side products or waste have been widely applied as biocatalysts in pharmaceutical production and many industries such as biofuel, biomaterials, biosensor, food, and environmental treatment. Although enzymes have shown its potential as biocatalysts for many industrial applications, natural enzymes were not originated for manufacturing process which requires harsh reaction conditions such as high temperature, alkaline pH, and organics solvents. It was reported that reduction of final conversion of several enzymatic reactions was declined at high temperature. Protein engineering to improve the enzymes’ thermostability is crucial to extend the use of the industrial enzymes and maximize effectiveness of the enzyme-based procesess. Various industrial enzymes with improved thermostability were produced through rational protein engineering using different strategies. This review is not aimed to cover all successful rational protein engineering studies. The review focuses on some effective strategies which have widely used to increase the thermostability of several industrial enzymes through introduction of disulfide bonds and introduction of proline.

Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALUMINUM 1100 is commercially pure aluminum and is characterized by its excellent ability to be drawn, spun, stamped or forged. It has good weldability, excellent resistance to corrosion and many home, architectural and industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-44. Producer or source: Various aluminum companies. Originally published October 1956, revised February 1974.


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Kubota alloys HK40 and HK50 are austenitic Fe-Cr-Ni alloys that have been standard heat-resistant materials for more than four decades. With moderately high temperature strength, oxidation resistance, and carburization resistance the alloys are used in a wide variety of industrial applications. HK 50 has slightly higher carbon content. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on casting, heat treating, machining, and joining. Filing Code: SS-998. Producer or source: Kubota Metal Corporation, Fahramet Division.


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Miha Bahun ◽  
Marko Šnajder ◽  
Dušan Turk ◽  
Nataša Poklar Ulrih

ABSTRACT Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix. Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism. IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.


Author(s):  
Claudia Capusoni ◽  
Immacolata Serra ◽  
Silvia Donzella ◽  
Concetta Compagno

Phytic acid is an anti-nutritional compound able to chelate proteins and ions. For this reason, the food industry is looking for a convenient method which allows its degradation. Phytases are a class of enzymes that catalyze the degradation of phytic acid and are used as additives in feed-related industrial processes. Due to their industrial importance, our goal was to identify new activities that exhibit best performances in terms of tolerance to high temperature and acidic pH. As a result of an initial screening on 21 yeast species, we focused our attention on phytases found in Cyberlindnera jadinii, Kluyveromyces marxianus, and Torulaspora delbrueckeii. In particular, C. jadinii showed the highest secreted and cell-bound activity, with optimum of temperature and pH at 50°C and 4.5, respectively. These characteristics suggest that this enzyme could be successfully used for feed as well as for food-related industrial applications.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1528
Author(s):  
Mateusz Szul ◽  
Tomasz Iluk ◽  
Aleksander Sobolewski

In this research, the idea of multicomponent, one-vessel cleaning of syngas through simultaneous dedusting and adsorption is described. Data presented were obtained with the use of a pilot-scale 60 kWth fixed-bed GazEla reactor, coupled with a dry gas cleaning unit where mineral sorbents are injected into raw syngas at 500–650 °C, before dedusting at ceramic filters. The research primarily presents results of the application of four calcined sorbents, i.e., chalk (CaO), dolomite (MgO–CaO), halloysite (AlO–MgO–FeO), and kaolinite (AlO–MgO) for high-temperature (HT) adsorption of impurities contained in syngas from gasification of biomass. An emphasis on data regarding the stability of the filtration process is provided since the addition of coating and co-filtering materials is often necessary for keeping the filtration of syngas stable, in industrial applications.


Author(s):  
Carlos Eduardo Sequeiros-Borja ◽  
Bartłomiej Surpeta ◽  
Jan Brezovsky

Abstract Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein–protein and protein–nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.


Biochemistry ◽  
2018 ◽  
Vol 58 (11) ◽  
pp. 1451-1453 ◽  
Author(s):  
Yang Wang ◽  
Jian Chen ◽  
Zhen Kang

Sign in / Sign up

Export Citation Format

Share Document