scholarly journals Investigating the Performance of Point to Multipoint Microwave Connectivity across Undulating Landscape during Rainfall

Author(s):  
Kingsley Ukhurebor ◽  
Wilson Nwankwo

One of the most debated issues surrounding wireless connectivity is performance especially under different topographic and climatic scenarios. Performance has a direct relationship with throughput measured in terms of how well a given wireless connectivity provides consistent services over a given period compared to the wired alternative. Research has shown that wireless connectivity is constrained by significant physical components such as topography, weather conditions, propagation frequency, and distance. It is commonplace to see notable vendors of wireless network products make claims as to how their technologies are designed to remedy any signal degradation that may arise from the aforementioned physical elements. This paper is aimed at evaluating the performance of a point to multipoint connectivity using Ubiquiti’s 5.8 GHz Point to Multipoint Base Stations deployed within a landscape marked by series of undulating highlands and lowlands. In this experiment, a base station node is established with connectivity to two other nodes of same specifications with one node as the destination radio whereas the other acts as the control which is located on a table land. The nodes were separated by triangular distances of 3 km and network connectivity was maintained over thirty days during periods of rainfall. Packets sent and received across each node was carefully recorded. The results from the analysis showed that packet losses to and from the control node was significantly lower than that of the other node under same weather conditions.

Geophysics ◽  
1985 ◽  
Vol 50 (5) ◽  
pp. 867-869
Author(s):  
C. Patrick Ervin

In the exploration environment, a primary application of gravity surveying is regional reconnaissance. The first step in such a survey is to establish a base‐station network. Since an error in the network will propagate to many stations in the subsequent survey, careful field work and accurate reduction of these data are particularly critical. Optimally, successive base stations are tied by minimum‐time loops using at least two meters read simultaneously. Using two meters has the obvious advantage of doubling the number of ties with minimal increase in time and cost. Erroneous readings are also much easier to detect and correct with two meters. Furthermore, the simultaneous operation of the meters allows calibrations of the two to be compared by computing a linear regression of the readings of one meter against the corresponding readings of the other. If the meter calibrations are identical, the regression line should have a slope of 1. A significant deviation from 1 indicates a systematic variation in calibration.


2019 ◽  
Vol 70 (2) ◽  
pp. 165-170
Author(s):  
Aleksandar Lebl ◽  
Dragan Mitić ◽  
Žarko Markov ◽  
Željka Tomić

Abstract In this paper it is presented the process of designing equi-interference lines in the CDMA mobile telephony systems. It is proved that shape of these lines in one base station cell is determined by emission characteristics of that base station and the base stations, which form the first ring around the considered cell. The influence of base stations from the other rings after the first one is dominantly noticed as the interference increase in each point of equi-interference line. The value of interference increase depends on the value of environmental propagation coefficient. For its small values it is necessary to consider the influence of base stations from more than twenty rings around the analyzed cell, while for great values it is enough to consider only two rings.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 248
Author(s):  
T Padmapriya ◽  
S V. Manikanthan

To meet the regularly expanding versatile information movement request, the portable administrators are conveying a heterogeneous system with numerous entrance innovations and an ever-increasing number of base stations to build the system scope and limit. Be that as it may, the base stations are disconnected from each other, so unique sorts of radio assets and equipment assets can't be shared and dispensed inside the general system agreeably. The versatile administrators are in this manner confronting expanding system operational costs and a high framework control utilization. In this paper, a brought together radio access organize design, alluded to as the super base station (super BS), is proposed, as a conceivable answer for a vitality productive fifth-age (5G) versatile framework. The super base station decouples the coherent capacities and physical elements of conventional base stations, so unique sorts of framework assets can be on a level plane shared and factually multiplexed among all the virtual base stations all through the whole framework. The framework structure and principle functionalities of the super BS are portrayed. Some key advances for framework usage, i.e., the asset pooling, continuous virtualization, versatile equipment asset assignment are likewise featured.


Author(s):  
Natalya Ivanovna Shaposhnikova ◽  
Alexander Aleksandrovich Sorokin

The article consideres the problems of determining the need to modernize the base stations of the cellular network based on the mathematical apparatus of the theory of fuzzy sets. To improve the quality of telecommunications services the operators should send significant funding for upgrading the equipment of base stations. Modernization can improve and extend the functions of base stations to provide cellular communication, increase the reliability of the base station in operation and the functionality of its individual elements, and reduce the cost of maintenance and repair when working on a cellular network. The complexity in collecting information about the equipment condition is determined by a large number of factors that affect its operation, as well as the imperfection of obtaining and processing the information received. For a comprehensive assessment of the need for modernization, it is necessary to take into account a number of indicators. In the structure of indicators of the need for modernization, there were introduced the parameters reflecting both the degree of aging and obsolescence(the technical gap and the backlog in connection with the emergence of new technologies and standards). In the process of a problem solving, the basic stages of decision-making on modernization have been allocated. Decision-making on the need for modernization is based not only on measuring information that takes into account the decision-makers, but also on linguistic and verbal information. Therefore, to determine the need for upgrading the base stations, the theory of fuzzy sets is used, with the help of which experts can be attracted to this issue. They will be able to formulate additional fuzzy judgments that help to take into account not only measuring characteristics, but also poorly formalized fuzzy information. To do this, the main indicators of the modernization need have been defined, and fuzzy estimates of the need for modernization for all indicators and a set of indicators reflecting the need for upgrading the base stations have been formulated.


Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.


1977 ◽  
Vol 12 (1) ◽  
pp. 51-76
Author(s):  
B. Bobée ◽  
D. Cluis ◽  
A. Tessier

Abstract A water quality sampling programme for James Bay territory established in a previous study has been carried out for the Department of Natural Resources of the Province of Quebec. The network is composed of 5 base-stations, sampled every fortnight to determine the variability with time of the parameters and 16 satellite-stations, sampled five times yearly with a view to determine the spatial variability. The data (major ions and certain nutrients) gathered during the 1974–1975 field survey are subjected to an analysis by a multivariate technique (correspondence analysis) in addition to certain classical statistical methods. The latter have shown that the mean values obtained at satellite stations were representative of the annual mean. In addition, the results permit the determination for a given parameter, of the relationship between stations and, for a given station, the relationship between parameters. In both cases, the formulation of predictive equations was attempted. An overall evaluation of the data by correspondence analysis has permitted: - a more precise definition of the qualitative behaviour of the different sub-basins of the James Bay territory and characterization of their waters;- a proof of the existence of gradual concentration changes in both East-West and North-South directions. Within the original objectives of the network, the results of the study have led to the following recommendations: - to continue synchronised samplings;- to transform a base station with a low information content into a satellite station;- to create a new base station in the eastern part of the territory.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Swati Ganeti ◽  
Rajat Agarwal ◽  
Murali Krishna Medudula ◽  
Mahim Sagar

Telecom industry is one of those industries which has changed dramatically during the past decade. With more and more players entering in this industry, competition is ever increasing. The war between these players is slowly shifting from the price to the augmentation. This paper aims at exploring such factors which influence a customers preference of one telecom service provider (TSP) over the other. It is a descriptive research where study has been conducted among the consumers of different telecom service providers (TSPs). By reviewing the existing literature in this domain, we explored different factors which affect the consumers decision to prefer one telecom service provider over the other. A consumer targeted questionnaire was designed where consumers were asked about the factors they consider (with their relative importance quantified using Likert scale), before buying a new network connection to know the relative importance of the various factors. Factor Analysis was performed to club various variables into distinct factors. Statistical techniques then helped in identifying the relative importance. From the Factor Loading matrix the following five factors were generated:- Overall service quality, Point of Purchase Differentiator, Promotion Measures, Tariff Plans and Size of the Network. Further study in the behavioural perceptions of consumer shows that the most important factor in influencing the customer buying behavior is Service Quality. The second most important factor is cost and various plans offered by the telecom service provider. Network connectivity was considered by almost all the respondents and consumers prefer the largest network player. The study also found that promotional measures dont influence the customers as expected.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 996
Author(s):  
Athanasios Karagioras ◽  
Konstantinos Kourtidis

The purpose of the present study is to investigate the impact of rain, snow and hail on potential gradient (PG), as observed in a period of ten years in Xanthi, northern Greece. An anticorrelation between PG and rainfall was observed for rain events that lasted several hours. When the precipitation rate was up to 2 mm/h, the decrease in PG was between 200 and 1300 V/m, in most cases being around 500 V/m. An event with rainfall rates up to 11 mm/h produced the largest drop in PG, of 2 kV/m. Shortly after rain, PG appeared to bounce back to somewhat higher values than the ones of fair-weather conditions. A decrease in mean hourly PG was observed, which was around 2–4 kV/m during the hail events which occurred concurrently with rain and from 0 to 3.5 kV/m for hail events with no rain. In the case of no drop, no concurrent drop in temperature was observed, while, for the other cases, it appeared that, for each degree drop in temperature, the drop in hourly mean PG was 1000 V/m; hence, we assume that the intensity of the hail event regulates the drop in PG. The frequency distribution of 1-minute PG exhibits a complex structure during hail events and extend from −18 to 11 kV/m, with most of the values in the negative range. During snow events, 1-minute PG exhibited rapid fluctuations between high positive and high negative values, its frequency distribution extending from −10 to 18 kV/m, with peaks at −10 and 3 kV/m.


2021 ◽  
Vol 13 (3) ◽  
pp. 68
Author(s):  
Steven Knowles Flanagan ◽  
Zuoyin Tang ◽  
Jianhua He ◽  
Irfan Yusoff

Dedicated Short-Range Communication (DSRC) or IEEE 802.11p/OCB (Out of the Context of a Base-station) is widely considered to be a primary technology for Vehicle-to-Vehicle (V2V) communication, and it is aimed toward increasing the safety of users on the road by sharing information between one another. The requirements of DSRC are to maintain real-time communication with low latency and high reliability. In this paper, we investigate how communication can be used to improve stopping distance performance based on fieldwork results. In addition, we assess the impacts of reduced reliability, in terms of distance independent, distance dependent and density-based consecutive packet losses. A model is developed based on empirical measurements results depending on distance, data rate, and traveling speed. With this model, it is shown that cooperative V2V communications can effectively reduce reaction time and increase safety stop distance, and highlight the importance of high reliability. The obtained results can be further used for the design of cooperative V2V-based driving and safety applications.


Sign in / Sign up

Export Citation Format

Share Document