Design of Ultra Low Profile Inverted L Antenna Composed of CPW Printed on PET Sheet for IoT Application

2021 ◽  
Vol 35 (11) ◽  
pp. 1296-1297
Author(s):  
Mitsuo Taguchi

The ultra low profile inverted L (ULPIL) antenna on a rectangular conducting plane is located above the lower conducting plane and numerically analyzed for the application of IoT. The coplanar waveguide (CPW) is inserted within the antenna element. The antenna element is printed on the polyethylene terephthalate (PET) sheet. The shift of the resonant frequency of this antenna is small due to the existence of lower conducting plane. The influence of the existence of the lower conducting plane can be neglected when the distance between the ULPIL antenna and the lower conducting plane is longer than 6 mm (0.049 wavelength). Therefore the ULPIL antenna may be promising for the IoT application.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 125
Author(s):  
Shaza El-Nady ◽  
Rania R. Elsharkawy ◽  
Asmaa I. Afifi ◽  
Anwer S. Abd El-Hameed

This paper exhibits a high-gain, low-profile dipole antenna array (DAA) for 5G applications. The dipole element has a semi-triangular shape to realize a simple input impedance regime. To reduce the overall antenna size, a substrate integrated cavity (SIC) is adopted as a power splitter feeding network. The transition between the SIC and the antenna element is achieved by a grounded coplanar waveguide (GCPW) to increase the degree of freedom of impedance matching. Epsilon-near-zero (ENZ) metamaterial technique is exploited for gain enhancement. The ENZ metamaterial unit cells of meander shape are placed in front of each dipole perpendicularly to guide the radiated power into the broadside direction. The prospective antenna has an overall size of 2.58 λg3 and operates from 28.5 GHz up to 30.5 GHz. The gain is improved by 5 dB compared to that of the antenna without ENZ unit cells, reaching 11 dBi at the center frequency of 29.5 GHz. Measured and simulated results show a reasonable agreement.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zain Ul Abidin ◽  
Qunsheng Cao ◽  
Gulab Shah ◽  
Zaheer Ahmed Dayo ◽  
Muhammad Ejaz

Abstract In this paper, a miniaturized bandstop frequency selective surface (FSS) with high angular stability is presented. Each FSS element consists of four sets each consisting eight octagonal concentric interconnected loops. The four sets are connected with each other through outermost octagonal loop. The unit size is miniaturized to 0.066 λ0 at the resonant frequency of 1.79 GHz. The proposed configuration achieves excellent angular stability (only 0.025 GHz resonant frequency deviation is observed upto 83° oblique angles). The working mechanism of FSS is explained with the help of equivalent circuit model (ECM), electric field distribution, and corresponding surface current distribution. A prototype of the designed bandstop FSS is fabricated to verify the simulated frequency response. The experimental results are consistent with the simulation results. Simple geometry, low profile, high angular stability, and compact cell size are prominent features of the proposed structure.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Shiqiang Fu ◽  
Yuan Cao ◽  
Yue Zhou ◽  
Shaojun Fang

A new low-profile variable pitch angle cylindrical helical antenna employing a copper strip as impedance transformer is proposed in this paper. Under the circumstance of a limited antenna height, the circular polarization performance of the antenna has been enhanced by changing the pitch angle and the input impedance matching has been improved by adjusting the copper strip match stub. The design method of the proposed antenna is given. The optimal antenna structure for INMARSAT application has been fabricated and measured. The measured results show that in the whole maritime satellite communication work band the VSWR is less than 1.2, its antenna gain is higher than 9 dBi, and the axial ratio is lower than 2.5 dB. The experimental results have a good agreement with the simulations. The proposed antenna is compact and easy tuning. It provides a promising antenna element for maritime satellite communication applications.


2019 ◽  
Vol 8 (3) ◽  
pp. 43-49 ◽  
Author(s):  
A. Kumar ◽  
A. P. S. Pharwaha

This study reports the design of a coplanar waveguide (CPW)-fed triple band fractal antenna for radio navigation and fixed satellite services. Reported antenna has low profile, multiband and wideband performance which make it suitable for the radio navigation and fixed satellite services in S band, C bandand X band. Proposed antenna resonates at 2.6GHz, 4.4GHz, and 8.7 GHz having bandwidth of 0.2457GHz, 0.700GHz, and 4.1980 GHz respectively. Maximumgain for the resonating bands is 3.6 dB, 5.5 dB, and 7.3 dB respectively. Simulated performance parameter of proposed antenna is verified experimentally by testing the fabricated antenna. Measured and simulated results are in good agreement


2021 ◽  
Vol 35 (11) ◽  
pp. 1418-1419
Author(s):  
Yuhao Feng ◽  
Yiming Chen ◽  
Atef Elsherbeni ◽  
Khalid Alharbi

A compact size arrow shaped patch in a rectangular slot antenna is designed for 5G communications in the lower 3 to 6 GHz band. The antenna element is fed through a coplanar waveguide with partial ground plane for better impedance matching with 50 Ohms across the entire band. The maximum gain of a single element is 3.8 dB at 3.7 GHz, while for linear arrays of 5 and 15 elements with uniform excitation the maximum gains are 10.9 dB and 16 dB, respectively. The 5 and 15 elements arrays provide scanning range with no significant degradation of the main beam up to 30˚ and 45˚, respectively. The properties of this antenna element makes it suitable for 5G wireless mobile devices and miniaturized base stations antenna arrays.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2552 ◽  
Author(s):  
Ran Fang ◽  
Rongguo Song ◽  
Xin Zhao ◽  
Zhe Wang ◽  
Wei Qian ◽  
...  

In this article, a graphene-assembled film (GAF)-based compact and low-profile ultra-wide bandwidth (UWB) antenna is presented and tested for wearable applications. The highly conductive GAFs (~106 S/m) together with the flexible ceramic substrate ensure the flexibility and robustness of the antenna, which are two main challenges in designing wearable antennas. Two H-shaped slots are introduced on a coplanar-waveguide (CPW) feeding structure to adjust the current distribution and thus improve the antenna bandwidth. The compact GAF antenna with dimensions of 32 × 52 × 0.28 mm3 provides an impedance bandwidth of 60% (4.3–8.0 GHz) in simulation. The UWB characteristics are further confirmed by on-body measurements and show a bending insensitive bandwidth of ~67% (4.1–8.0 GHz), with the maximum gain at 7.45 GHz being 3.9 dBi and 4.1 dBi in its flat state and bent state, respectively. Our results suggest that the proposed antenna functions properly in close proximity to a human body and can sustain repetitive bending, which make it well suited for applications in wearable devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xue-Xia Yang ◽  
Guan-Nan Tan ◽  
Bing Han ◽  
Hai-Gao Xue

A novel millimeter wave coplanar waveguide (CPW) fed Fabry-Perot (F-P) antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS) and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth ofS11less than −10 dB is from 34 to 37.7 GHz (10.5%), and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.


2020 ◽  
Vol 19 (1) ◽  
pp. 213-217 ◽  
Author(s):  
Kin-Lu Wong ◽  
Hsuan-Jui Chang ◽  
Chung-Ying Wang ◽  
Shao-Yu Wang

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 980
Author(s):  
Yu-Seong Choi ◽  
Jeong-Su Park ◽  
Wang-Sang Lee

This paper proposes a beam-reconfigurable antenna for unmanned aerial vehicles (UAVs) with wide beam coverage by applying beam-combining technology to multiple antennas with different beam patterns. The proposed multi-antenna system consists of a circular patch antenna and a low-profile printed meandered monopole antenna. For beam combining, a coplanar waveguide with ground (CPW-G) structure feeding network is proposed, and it consists of two input ports, a 90° hybrid coupler, a microstrip 90° phase delay line, and a single-pole double-throw (SPDT) switch. It performs the role of power distribution and phase adjustment, and synthesizes the broad-side beam of the monopole antenna and the end-fire beam of the patch antenna to form the directive broadside beams in four different directions. The proposed antenna system operates at 5–5.5 GHz which covers both UAV ground control frequencies (5.03–5.09 GHz) and UAV mission frequencies (5.091–5.150 GHz). The peak gain, total efficiency, and half-power beamwidth (HPBW) of the antenna system are approximately 5.8 dBi, 76%, 145° in the elevation plane, and 360° in the azimuth plane respectively. Its electrical size and weight are λ 0 × λ 0 × 0.21 λ 0 at 5.09 GHz and 19.2 g, respectively.


Sign in / Sign up

Export Citation Format

Share Document