The Ecology and Management of Wood in World Rivers

<em>Abstract.</em>—Although submerged wood obviously influences the flow, little information exists on its various hydraulic effects in streams and rivers. This chapter gives a brief overview of the current knowledge about hydraulic effects of circular cylinders and simple tree shaped models and summarizes the few field data on wood induced hydraulics in streams and rivers. The focus is on the flow pattern and other effects of importance for instream ecology. The principal cross-flow field of a singular log perpendicular to flow is determined by the Reynolds number related to the log’s diameter. For the range of Reynolds numbers of logs and branches in streams and rivers (1 ‧ 10<sup>2</sup> to 1 ‧ 10<sup>6</sup>), the cross flow pattern is symmetrical, vortex streets shed, and a wake with reduced mean velocity develops behind the log. In the vertical confined flow of streams and rivers, the hydraulic effects depend on the blockage caused by the log, its distances to the water surface, and its distance to the streambed. The blockage determines the resistance to flow, the upstream afflux, the local flow acceleration, and the intensity of flow deflection. For logs within distances of 2 diameters to the water surface, the relative submergence and the Froude Number determine the highly variable local cross-flow field. For logs near the streambed, the form and roughness of the bed and the size of the gap to the bed control the hydraulics. Submerged jet-like flows, which cause local scour, are reported, but detailed information on the hydraulics of logs close to a natural streambed is missing. For logs in close contact to or partly embedded into the bed, the principal flow pattern of recirculating vortices attached to the bed develop in front and behind the logs. The extent of these vortices and the extent of the wake behind the logs appear to be larger in sand-bed streams than in flumes with smooth and level beds. Complex dense wooden objects and wood accumulations are comparable to solid structures. Their flow field is determined by the size of the bluff surfaces and the shedding from edges obtuse to flow. Wood spread out at the streambed causes skin roughness, and models based on technical roughness approximate the resulting near-bed flow regime. The general validity of most findings in streams and rivers is still vague since they are supported by only few data. Further flow data from the field and from flume experiments that simulate the complexity of the natural environment are needed.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 797
Author(s):  
Stefan Hoerner ◽  
Iring Kösters ◽  
Laure Vignal ◽  
Olivier Cleynen ◽  
Shokoofeh Abbaszadeh ◽  
...  

Oscillating hydrofoils were installed in a water tunnel as a surrogate model for a hydrokinetic cross-flow tidal turbine, enabling the study of the effect of flexible blades on the performance of those devices with high ecological potential. The study focuses on a single tip-speed ratio (equal to 2), the key non-dimensional parameter describing the operating point, and solidity (equal to 1.5), quantifying the robustness of the turbine shape. Both parameters are standard values for cross-flow tidal turbines. Those lead to highly dynamic characteristics in the flow field dominated by dynamic stall. The flow field is investigated at the blade level using high-speed particle image velocimetry measurements. Strong fluid–structure interactions lead to significant structural deformations and highly modified flow fields. The flexibility of the blades is shown to significantly reduce the duration of the periodic stall regime; this observation is achieved through systematic comparison of the flow field, with a quantitative evaluation of the degree of chaotic changes in the wake. In this manner, the study provides insights into the mechanisms of the passive flow control achieved through blade flexibility in cross-flow turbines.


2017 ◽  
Vol 8 (1-IT) ◽  
Author(s):  
Mario Tanga ◽  
Giacomo Gelati ◽  
Marco Casazza

6Contemporary science and culture show more and more extended and meaningful signs about the increasing explaining power of evolutionary paradigm. This power overcomes the field of the history of living species. We consider “On the Origin of Species” of 1859 by Charles Darwin as the establishment of this paradigm, but this original and fruitful idea has received the several and different contributions from near and (seemingly) far scientific fields. This process happened according distinguishable waves and leaded the evolutionary theory very far from its starting point, making it something wider and different. The current knowledge of this theory involves many kinds of scholars: biologists, zoologists, botanists, development biologists, genetics/genomics scholars and also scholars of many other disciplines, as statistics, mathematics, ecology, environmental sciences, physics, chemistry, linguistics, sociology, neuro-sciences, epidemiology, informatics, immunology. During the end of XX Century, the study of complexity, of self-organization and of emerging properties has been a decisive factor to extend evolution until beyond the boundaries of Biology. These phenomena, or properties, or features, that are shown by “living” and “not-living” systems (so called basing ourselves on traditional definitions), have deeply modified even the “properly” biologic evolution itself and besides this has demonstrated that, mutatis mutandis, evolutionary processes or phenomena happen also out of biologic dominion, referring “biologic” to “wet-ware world”. This is to say the class of evolutionary phenomena is more widely and more inclusively extended than our opinion. We can mean this as a revolution (according to Kuhn’s definition) that imposes us to restructure the definition of evolution itself and even to redraw the boundaries and the map of Biology itself. Aiming to establish a name of this field of study we propose “PanEvolutionary Theory” (PanEvo Theory). No doubt Prigogine offered an important contribution to this area. The thinking and the work of Enzo Tiezzi can be placed seen in the same perspective. Disregarding direct connections and contacts with the Nobel Prize Prigogine, however the studies of Enzo Tiezzi are neither a fully unexpected work nor a theory lacking of important potentialities: it is not a strange or eccentric academic exercise. Except the close contact and the dense exchanges with Prigogine, we collocate Enzo Tiezzi in the same context of Gregory Chaitin, of Rachel Carson, of John Harte and Robert H. Socolow, of James Paul Wesley, of Sertorio, of Oort and Peixoto, just to cite the most strictly related. Our Academy had the privilege and the honor of having Enzo Tiezzi in its ranks. We think that merits and developments of the thinking of this scholar have to produce important and lasting fruits in the future.


Author(s):  
T. O. Monz ◽  
M. Stöhr ◽  
W. O’Loughlin ◽  
J. Zanger ◽  
M. Hohloch ◽  
...  

A swirl stabilized MGT combustor (Turbec T100) was operated with natural gas and was experimentally characterized in two test rigs, a pressurized and optically accessible MGT test rig and an atmospheric combustor test rig. For the detailed characterization of the combustion processes, planar OH-PLIF and simultaneous 3D-stereo PIV measurements were performed in the atmospheric combustor test rig. Flow fields, reaction zones and exhaust gas emissions are reported for a range of pressure scaled MGT load points. Parameter studies on combustor inlet conditions (e.g. air preheating temperature, air and fuel mass flow rates and fuel split) were conducted in the atmospheric combustor test rig. From the parameters studies the fuel split between the pilot and the main stage and the air preheating temperature were found to have the biggest impact on the flame shape, flame stabilization and exhaust gas emissions. The measurements of the ATM test rig are compared with measurements of the pressurized MGT test rig with and without an optically accessible combustion chamber. Opened and closed conical flame and flow pattern were found in both test rigs. Reasons for the two flame and flow pattern are supposed to be the interaction of pilot stage combustion and flow field and the interaction of the dilution air with the combustion and the flow field. The results are discussed and compared with repect to a transferability of combustion characteristics from the ATM test rig to the MGT test rigs.


2012 ◽  
Vol 256-259 ◽  
pp. 2569-2572
Author(s):  
Zhan Ying Wu ◽  
Zhen Wei Mu

The unsteady flow RNG k ~ ε turbulence model and VOF Method are employed to numerically simulate 3-D flow field of diversion tunnel outlet stilling pool in Xinjiang dina river wuyi reservoir. The computational and experimental water surface elevation, pressure on the bottom and cross-sectional mean velocity of the suspended grid stilling pool are compared in well agreement. Suspended grid is used in stilling pool, the number of vortex and range are increased in the pool, and the size of the vortex is decreased along with the flow increase. The suspended grid position is determined at end of the vortex. In the suspended grid stilling pool water stability, flow regime is good.


2015 ◽  
Vol 3 (1) ◽  
pp. 67-86 ◽  
Author(s):  
M. Liang ◽  
V. R. Voller ◽  
C. Paola

Abstract. In this work we develop a reduced-complexity model (RCM) for river delta formation (referred to as DeltaRCM in the following). It is a rule-based cellular morphodynamic model, in contrast to reductionist models based on detailed computational fluid dynamics. The basic framework of this model (DeltaRCM) consists of stochastic parcel-based cellular routing schemes for water and sediment and a set of phenomenological rules for sediment deposition and erosion. The outputs of the model include a depth-averaged flow field, water surface elevation and bed topography that evolve in time. Results show that DeltaRCM is able (1) to resolve a wide range of channel dynamics – including elongation, bifurcation, avulsion and migration – and (2) to produce a variety of deltas such as alluvial fan deltas and deltas with multiple orders of bifurcations. We also demonstrate a simple stratigraphy recording component which tracks the distribution of coarse and fine materials and the age of the deposits. Essential processes that must be included in reduced-complexity delta models include a depth-averaged flow field that guides sediment transport a nontrivial water surface profile that accounts for backwater effects at least in the main channels, both bedload and suspended sediment transport, and topographic steering of sediment transport.


2013 ◽  
Vol 353-356 ◽  
pp. 3190-3193
Author(s):  
Zong Rui Hao ◽  
Juan Xu ◽  
Hai Yan Bie ◽  
Zhong Hai Zhou

To study the flow pattern in the process of oil-water stirring in three paddle stirring tank, RNG k-ε turbulent model and VOF model are adopted to simulate the flow field at different time in the stirred tank with the baffle. The results showed that, in the stirring process, inverted cone manifold was formed in the center of the stirring shaft. The stratified area was formed in the baffle and gradually transported to the bottom of the tank. The two circular flows were formed among three groups of blades. And the axially acting of the fluid was strong, which made homogeneous stirring in the stirred tank. At the same time the radial flow of the cross-section inside the tank increased because of the baffle.


1994 ◽  
Vol 5 (2) ◽  
pp. 91-123 ◽  
Author(s):  
John M. Crawford ◽  
Keiko Watanabe

Inflammatory and immune responses involve close contact between different populations of cells. These adhesive interactions mediate migration of cells to sites of inflammation and the effector functions of cells within the lesions. Recently, there has been significant progress in understanding the molecular basis of these intercellular contacts. Blocking interactions between cell adhesion molecules and their ligands has successfully suppressed inflammatory reactions in a variety of animal models in vivo. The role of the host response in periodontal disease is receiving renewed attention, but little is known of the function of cell adhesion molecules in these diseases. In this review we summarize the structure, distribution, and function of cell adhesion molecules involved in inflammatory/immune responses. The current knowledge of the distribution of cell adhesion molecules is described and the potential for modulation of cell adhesion molecule function is discussed.


Author(s):  
Joseph Mazur ◽  
Trilochan Singh

An experimental investigation of the flow in a cross flow fan at three operating conditions is reported. Velocity and pressure maps for the flow field are presented along with a determination of the momentum exchanges and energy transfers between the blading and the flow field regions.


Sign in / Sign up

Export Citation Format

Share Document