scholarly journals Performance Evaluation of a MIMO based Underwater Communication System under Fading Conditions

2019 ◽  
Vol 9 (6) ◽  
pp. 4886-4892 ◽  
Author(s):  
B. Pranitha ◽  
L. Anjaneyulu

Due to the intense importance of underwater applications in military and commercial purposes, Underwater Acoustic Communication (UWAC) is an attracting research area. Very high propagation delay, path loss, and low bandwidth are the factors that challenged the acoustic waves in an underwater environment. Multi-input multi-output (MIMO) techniques are currently considered in UWAC to surpass the bandwidth limitation of the undersea channel. In this paper, the accomplishment of a MIMO in UWAC System highlighting both Line of Sight (LOS), i.e. the Rician fading and Non-Line of Sight (NLOS), i.e. the Rayleigh fading signal propagation, is assessed. Spatial Modulation technique is used, which helps in increasing the data rate in UWAC. It controls the spatial distribution of the energy caused by a signal in such a way that the single ocean channel sustains multiple parallel communication channels. The utilization of Zero Forcing (ZF) equalizer, which estimates the transmitted data proves the success of removing inter symbol interference (ISI). Matlab simulations are done for the UWAC system for values of LOS/NLOS. Because of various scattering effects in NLOS propagation, the error rate is considerably high when compared to that of the LOS propagation. Bit Error Rate (BER) values for the corresponding signal to noise ratio (SNR) are calculated.

Author(s):  
Adamu Murtala Zungeru ◽  
Joseph Chuma ◽  
Mmoloki Mangwala ◽  
Boyce Sigweni ◽  
Oduetse Matsebe

The most challenging issue in the design of wireless sensor networks for the application of localization in the underground environment, mostly for miner’s location, is the sensor nodes’ energy consumption, efficiency and communication. Underground Wireless Sensor Networks are active and promising area of application of Wireless Sensor Networks (WSNs), whereby sensor nodes perform sensing duties in the underground environment. Most of the communication techniques used in the underground environment experience a high path loss and hence, hinders the range needed for transmission. However, the available option to increase information transmission is to increase the transmission power which needs large size of apparatus which is also limited in the underground. To solve the mentioned problems, this paper proposed a Magnetic Induction based Pulse Power. Analytical results of the Magnetic Induction based Pulse Power with an ordinary magnetic induction communication technique show an improvement in Signal-to-Noise Ratio (SNR) and path loss with variation in distance between nodes and frequency of operation. This paper further formulates a nonlinear program to determine the optimal data (events) extraction in a grid based WUSNs.


This chapter deals with parameters estimation of satellite channels based on IEEE 802.11a standard. Dependencies of a signal to noise ratio on free space path loss for different types of modulation (BPSK, QPSK, 16QAM, 64QAM), noise temperatures, number of OFDM symbols, Doppler frequency offsets, satellite amplifier gain, and aircraft antenna diameter were received using model “OFDM_FSPL_Sat_FSPL_802.11a.” A method for parameters estimation of satellite OFDM communication channel was proposed. The spectrums and signals constellations of received signals were compared for different types of the amplifier nonlinearity. The developed model allows predicting spectral regrowth of digitally modulated OFDM signals due to the amplifier nonlinearity. Channel parameters were received for the Rayleigh and Rician fading, different types of Doppler spectrum, the gain of multipath channels, the delay time of message flow using models “OFDM_Multipath_Sat_Multipath_802.11a,” “OFDM_AWGN_Sat_Multipath_802.11a,” and “OFDM_FSPL_Sat_Rician_802.11a.”


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammed Bahjat Majed ◽  
Tharek Abd Rahman ◽  
Omar Abdul Aziz ◽  
Mohammad Nour Hindia ◽  
Effariza Hanafi

The current propagation models used for frequency bands less than 6 GHz are not appropriate and cannot be applied for path loss modeling and channel characteristics for frequency bands above 6 GHz millimeter wave (mmWave) bands, due to the difference of signal propagation characteristics between existing frequency bands and mmWave frequency bands. Thus, extensive studies on channel characterization and path loss modeling are required to develop a general and appropriate channel model that can be suitable for a wide range of mmWave frequency bands in its modeling parameter. This paper presents a study of well-known channel models for an indoor environment on the 4.5, 28, and 38 GHz frequency bands. A new path loss model is proposed for the 28 GHz and 38 GHz frequency bands. Measurements for the indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios were taken every meter over a separation distance of 23 m between the TX and RX antenna locations to compare the well-known and the new large-scale generic path loss models. This measurement was conducted in a new wireless communication center WCC block P15a at Universiti Teknologi Malaysia UTM Johor, Malaysia, and the results were analyzed based on the well-known and proposed path loss models for single-frequency and multifrequency models and for directional and omnidirectional path loss models. Results show that the large-scale path loss over distance could be modeled better with good accuracy by using the simple proposed model with one parameter path loss exponent PLE (n) that is physically based to the transmitter power, rather than using the well-known models that have no physical base to the transmitted power, more complications (require more parameters), and lack of anticipation when explaining model parameters. The PLE values for the LOS scenario were 0.92, 0.90, and 1.07 for the V-V, V-H, and V-Omni antenna polarizations, respectively, at the 28 GHz frequency and were 2.30, 2.24, and 2.40 for the V-V, V-H, and V-Omni antenna polarizations, respectively, at the 38 GHz frequency.


2021 ◽  
Author(s):  
Shoaib Mughal ◽  
Rahim Umar ◽  
Fengfan Yang ◽  
Hongjun Xu ◽  
Rizwan Iqbal

Abstract This paper proposes the distributed Reed-Muller coded spatial modulation (DRMC-SM) scheme based on Kronecker product (KP) construction. This special construction enabled an effective distribution of classical Reed-Muller (RM) code along source and relay nodes. The proposed DRMC-SM scheme not only offers robustness in bit error rate (BER) performance but also enhances the spectral efficiency due to additional antenna index transmission inculcated by spatial modulation (SM). The usefulness of KP construction over classical Plotkin (CP) construction in coded-cooperation is analysed with and without incorporating SM. An efficient criteria for selecting the optimum bits is adopted at relay node which eventually results in better weight distribution of mutually constructed (source and relay) RM code under proposed KP construction. The numerical results show that proposed KP construction outperforms CP construction by gain of 1 dB in signal to noise ratio (SNR) at bit error rate (BER) of 7 x 10 -7 . Moreover, the proposed DRMC-SM scheme outperforms its non-cooperative Reed-Muller coded spatial modulation (RMC-SM) scheme as well as distributed turbo coded spatial modulation (DTC-SM) scheme in similar conditions. This prominent gain in SNR is evident due to path diversity, efficient selection of bits at relay node and the joint soft-in-soft-out (SISO) RM decoder deployed at the destination node.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Junchang Sun ◽  
Shuai Ma ◽  
Hui Zhou ◽  
Chun Du ◽  
Shiyin Li

Compared with the line-of-sight (LOS) condition, the multipath effect is more serious in the non-line-of-sight (NLOS) condition. Therefore, the LOS and NLOS identification is necessary for the multipath analysis of signal propagation. The commonly used method is the support vector machine (SVM) method with high computational complexity. To tackle this problem, this paper adopts the SVM classifier based on fewer selected features of the normalized power delay profile (PDP). Therein, the PDP can be obtained using the sliding correlation method. The results show that the SVM-based classifier can achieve high accuracy on LOS and NLOS identification. We then analyze the impact of the signal-to-noise ratio (SNR) and transmitting-receiving (Tx-to-Rx) distance on distinguishable multipaths under LOS and NLOS conditions. According to statistical measurement results, a function of distinguishable multipath numbers is established. Finally, we investigate the multipath power and delay parameters of average delay spread and root mean square (RMS) delay spread based on multipath results. The outcomes of this paper provide a useful support for analyzing signal propagation characteristics.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Author(s):  
Xiuhua Fu ◽  
Tian Ding ◽  
Rongqun Peng ◽  
Cong Liu ◽  
Mohamed Cheriet

AbstractThis paper studies the communication problem between UAVs and cellular base stations in a 5G IoT scenario where multiple UAVs work together. We are dedicated to the uplink channel modeling and the performance analysis of the uplink transmission. In the channel model, we consider the impact of 3D distance and multi-UAVs reflection on wireless signal propagation. The 3D distance is used to calculate the path loss, which can better reflect the actual path loss. The power control factor is used to adjust the UAV's uplink transmit power to compensate for different propagation path losses, so as to achieve precise power control. This paper proposes a binary exponential power control algorithm suitable for 5G networked UAV transmitters and presents the entire power control process including the open-loop phase and the closed-loop phase. The effects of power control factors on coverage probability, spectrum efficiency and energy efficiency under different 3D distances are simulated and analyzed. The results show that the optimal power control factor can be found from the point of view of energy efficiency.


2008 ◽  
Vol 57 (4) ◽  
pp. 2014-2026 ◽  
Author(s):  
David W. Matolak ◽  
Indranil Sen ◽  
Wenhui Xiong

We describe results from a channel measurement and modeling campaign for the airport surface environment in the 5-GHz band. Using a 50-MHz bandwidth test signal, thousands of power delay profiles (PDPs) were obtained and processed to develop empirical tapped-delay line statistical channel models for large airports. A log-distance path loss model was also developed. The large airport surface channel is classified into three propagation regions, and models are presented for each of the regions for two values of bandwidth. Values of the median root-mean-square (RMS) delay spread range from 500 to 1000 ns for these airports, with the 90 th percentile RMS delay spreads being approximately 1.7 ms. Corresponding correlation bandwidths (i.e., correlation value 1/2) range from approximately 1.5 MHz in non-line-of-sight (NLOS) settings to 17.5 MHz in line-of-sight (LOS) settings. Two types of statistical nonstationarity were also observed: 1) multipath component persistence and 2) propagation region transitions. We provide the multipath component probability of occurrence models and describe Markov chains that are used for modeling both phenomena. Channel tap amplitude statistics are also provided, using the flexible Weibull probability density function (pdf). This pdf was found to best fit fading tap amplitude data, particularly for frequently observed severe fading, which is characterized by fade probabilities that are worse than the commonly used Rayleigh model. Fading parameters equivalent to Nakagami-m-model values ofmnear 0.7 were often observed (withm= 1 being Rayleigh and m < 1 being worse than Rayleigh). We also provide channel tap amplitude correlation coefficients, which typically range from 0.1 to 0.4 but occasionally take values greater than 0.7.


2021 ◽  
Vol 254 ◽  
pp. 02007
Author(s):  
Vladimir Korochentsev ◽  
Сhen Wenjian ◽  
Victor Petrosyants ◽  
Tatiana Lobova ◽  
Julia Shpak

A mathematical model for elastic wave propagation in an ice cover with uneven relief (hummock) has been developed. The theoretical model is based on the application of “directed” Green’s functions. We obtained numerical results for different distances between radiating and receiving antennas installed inside the ice layer and in water medium. An information-measuring system was created to investigate elastic acoustic waves along ice surface based on electo-hydraulic generator. Experiments of high-frequency acoustic signal propagation from electro-hydraulic generator in water-ice-air system were carried out. We illustrated the model validity for the investigation of hydroacoustic wave propagation in real ice conditions.


2021 ◽  
Vol 336 ◽  
pp. 01012
Author(s):  
Xuan Zheng ◽  
Yanfeng Tang ◽  
Jingyi Du

Using the multiple scattering model of non-line-of-sight ultraviolet light to simulate and analyze the atmospheric channel characteristics in the complex environment of haze and dust. The Mie scattering theory and T matrix method are used to analyze the path loss of spherical particles and non-spherical particles with particle concentration at different communication distances. The results show that when the communication distance is less than 50 meters, the communication quality under severe haze is the best, and for long-distance communication, the path loss under severe haze increases almost proportionally. In the non-line-of-sight ultraviolet light communication link, the higher the concentration of dust particles, the better the communication quality of the non-line-of-sight ultraviolet light communication transmission. Analysis of the scattering coefficient of spherical particles is significantly greater than that of non-spherical particles.


Sign in / Sign up

Export Citation Format

Share Document