scholarly journals Interleukin-10 Serum Levels after Vaccination with In Vivo Prepared Toxoplasma gondii Excreted/Secreted Antigens

2013 ◽  
Vol 28 (2) ◽  
pp. 112-115 ◽  
Author(s):  
Seyed Hossein Abdollahi ◽  
Fateme Ayoobi ◽  
Hossein Khorramdelazad ◽  
Gholamhossein Hassanshahi ◽  
Behzad Nasiri Ahmadabadi ◽  
...  
2000 ◽  
Vol 68 (5) ◽  
pp. 2837-2844 ◽  
Author(s):  
Eric N. Villegas ◽  
Ulrike Wille ◽  
Linden Craig ◽  
Peter S. Linsley ◽  
Donna M. Rennick ◽  
...  

ABSTRACT Interleukin-10 (IL-10) is associated with inhibition of cell-mediated immunity and downregulation of the expression of costimulatory molecules required for T-cell activation. When IL-10-deficient (IL-10KO) mice are infected with Toxoplasma gondii, they succumb to a T-cell-mediated shock-like reaction characterized by the overproduction of IL-12 and gamma interferon (IFN-γ) associated with widespread necrosis of the liver. Since costimulation is critical for T-cell activation, we investigated the role of the CD28-B7 and CD40-CD40 ligand (CD40L) interactions in this infection-induced immunopathology. Our studies show that infection of mice with T. gondii resulted in increased expression of B7 and CD40 that was similar in wild-type and IL-10KO mice. In vivo blockade of the CD28-B7 or CD40-CD40L interactions following infection of IL-10KO mice with T. gondii did not affect serum levels of IFN-γ or IL-12, nor did it prevent death in these mice. However, when both pathways were blocked, the IL-10KO mice survived the acute phase of infection and had reduced serum levels of IFN-γ and alanine transaminase as well as decreased expression of inducible nitric oxide synthase in the liver and spleen. Analysis of parasite-specific recall responses from infected IL-10KO mice revealed that blockade of the CD40-CD40L interaction had minimal effects on cytokine production, whereas blockade of the CD28-B7 interaction resulted in decreased production of IFN-γ but not IL-12. Further reduction of IFN-γ production was observed when both costimulatory pathways were blocked. Together, these results demonstrate that the CD28-B7 and CD40-CD40L interactions are involved in the development of infection-induced immunopathology in the absence of IL-10.


2011 ◽  
Vol 80 (3) ◽  
pp. 921-928 ◽  
Author(s):  
Nisanart Charoenlap ◽  
Zeli Shen ◽  
Megan E. McBee ◽  
Suresh Muthupalani ◽  
Gerald N. Wogan ◽  
...  

Helicobacter cinaedi, a common human intestinal bacterium, has been implicated in various enteric and systemic diseases in normal and immunocompromised patients. Protection against oxidative stress is a crucial component of bacterium-host interactions. Alkyl hydroperoxide reductase C (AhpC) is an enzyme responsible for detoxification of peroxides and is important in protection from peroxide-induced stress.H. cinaedipossesses a singleahpC, which was investigated with respect to its role in bacterial survival during oxidative stress. TheH. cinaedi ahpCmutant had diminished resistance to organic hydroperoxide toxicity but increased hydrogen peroxide resistance compared with the wild-type (WT) strain. The mutant also exhibited an oxygen-sensitive phenotype and was more susceptible to killing by macrophages than the WT strain.In vivoexperiments in BALB/c and BALB/c interleukin-10 (IL-10)−/−mice revealed that the cecal colonizing ability of theahpCmutant was significantly reduced. The mutant also had diminished ability to induce bacterium-specific immune responsesin vivo, as shown by immunoglobulin (IgG2a and IgG1) serum levels. Collectively, these data suggest thatH. cinaedi ahpCnot only contributes to protecting the organism against oxidative stress but also alters its pathogenic propertiesin vivo.


1993 ◽  
Vol 177 (2) ◽  
pp. 551-555 ◽  
Author(s):  
P Durez ◽  
D Abramowicz ◽  
C Gérard ◽  
M Van Mechelen ◽  
Z Amraoui ◽  
...  

We investigated the in vivo effects of cyclosporin A (CsA) on the production of interleukin (IL) 10, a cytokine with major immunosuppressive properties. To elicit IL-10 production in vivo, BALB/c mice were injected either with the anti-mouse CD3 145-2C11 monoclonal antibody (mAb) (25 micrograms) or with bacterial lipopolysaccharide (LPS) (20 micrograms). A systemic release of IL-10 was observed in both models, IL-10 serum levels reaching 1.60 +/- 0.32 U/ml (mean +/- SEM) and 0.67 +/- 0.09 U/ml 6 h after injection of 145-2C11 mAb and LPS, respectively. Experiments in nude mice indicated that T cells are involved in the induction of IL-10 by anti-CD3 mAb, but not by LPS. Pretreatment with CsA (total dose: 50 mg/kg) before injection of 145-2C11 mAb completely prevented the release of IL-10 in serum as well as IL-10 mRNA accumulation in spleen cells. In contrast, CsA markedly enhanced LPS-induced IL-10 release (IL-10 serum levels at 6 h: 8.31 +/- 0.43 vs. 0.71 +/- 0.15 U/ml in mice pretreated with CsA vehicle-control, p < 0.001), as well as IL-10 mRNA accumulation in spleen. We conclude that CsA differentially affects IL-10 production in vivo depending on the nature of the eliciting agent. This observation might be relevant to clinical settings, especially in organ transplantation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer K. Dowling ◽  
Remsha Afzal ◽  
Linden J. Gearing ◽  
Mariana P. Cervantes-Silva ◽  
Stephanie Annett ◽  
...  

AbstractMitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2−/− mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Nilutpal Sharma Bora ◽  
Partha Sarathi Bairy ◽  
Abdus Salam ◽  
Bibhuti Bhusan Kakoti

Abstract Background Garcinia lanceifolia Roxb. has been used by many ethnic communities of Northeast India to mitigate various disorders like dyspepsia, ulcers, diabetes, etc. However, a robust scientific study on its antidiabetic and antiulcer potential is unavailable till date. The aim of this present study is to scientifically validate if the antidiabetic and antiulcer effects reported by the ethnic tribes of Assam has any scientific value or not. The effects were tested in adult Wistar albino rats using approved animal models for preclinical testing of pharmacological activities. Results The hydroalcoholic extract of the bark of Garcinia lanceifolia Roxb. was prepared and its LD50 was calculated. The LD50 was determined to be greater than 5000 mg/kg body weight. The extract at doses of 250 mg/kg body weight and 500 mg/kg body weight was found to exhibit a very potent dose-dependent antidiabetic activity. The results were backed by a battery of test including analysis of serum levels of blood glucose, lipid profiles, in vivo antioxidant enzymes, and histopathological studies. Evidence of dose-dependent antiulcer activity of the extract was backed by robust scientific data. It was found that HAEGL induced a significant dose-dependent increase in the ulcer index in both alcohol-induced and acetic acid-induced ulcer models, which was evident from the macroscopic observation of the inner lining of the gastric mucosa and the histological evaluation of the extracted stomach. Conclusion The results suggested that the bark of Garcinia lanceifolia (Roxb.) has significant antidiabetic and antiulcer potential. Further studies with respect to the development herbal dosage forms and its safety evaluation are required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2231
Author(s):  
Qingjun Lu ◽  
Hao Shen ◽  
Han Yu ◽  
Jing Fu ◽  
Hui Dong ◽  
...  

The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jalal Moludi ◽  
Hossein Samadi Kafil ◽  
Shaimaa A. Qaisar ◽  
Pourya Gholizadeh ◽  
Mohammad Alizadeh ◽  
...  

Abstract Purpose Alterations in the gut microbiome (dysbiosis) has been associated with increased microbial translocation, leading to chronic inflammation in coronary artery disease (CAD). It has been proposed that modulation of gut microbiota by probiotic might modify metabolic endotoxemia. Therefore, the purpose of this study was to examine the effects of Lactobacillus rhamnosus GG (LGG) on endotoxin level, and biomarkers of inflammation in CAD participants. Methods This study was a 12-weeks randomized, double-blind, and intervention on 44 patients with CAD. Patients were randomly allocated to receive either one LGG capsule 1.6 × 109 colony-forming unit (CFU) or the placebo capsules for 12 weeks. In addition, all the participants were also prescribed a calorie-restricted diet. Serum levels of interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), interleukin-10 (IL-10), and lipopolysaccharide (LPS), were assessed before and after the intervention. Results A significant decrease in IL1-Beta concentration (− 1.88 ± 2.25, vs. 0.50 ± 1.58 mmol/L, P = 0.027), and LPS levels (− 5.88 ± 2.70 vs. 2.96+ 5.27 mg/L, P = 0.016), was observed after the probiotic supplementation compared with the placebo. Participants who had ≥2.5 kg weight loss showed significantly improved cardiovascular-related factors, compared to patients with < 2.5 kg weight reduction, regardless of the supplement they took. Conclusion These data provide preliminary evidence that probiotic supplementation has beneficial effects on metabolic endotoxemia, and mega inflammation in participants with CAD.


Sign in / Sign up

Export Citation Format

Share Document