scholarly journals Hypoxia in the microenvironment promotes glycolysis to aggravate tumor progression via modulating the lincRNA-p21 and its downstream genes in HCC

Author(s):  
Shujie Li ◽  
Dingyi Yang ◽  
Furong Wu ◽  
Wei Zhou ◽  
Yue Xie ◽  
...  

IntroductionLincRNA-p21 was found to inhibit hepatic stellate cell (HSC) activation and liver fibrosis via a signaling cascade of lincRNA-p21-miR-181b-PTEN. Hypoxia was also previously proved to regulate hepatocellular carcinoma (HCC) glycolysis by targeting HK2.Material and methodsLuciferase assay was carried out to examine the regulatory role of miR-181b in lincRNA-p21 and HK2 expression. Quantitative real-time PCR was performed to measure the expression of lincRNA-p21, miR-181b and HK2 mRNA. Western blot and immunohistochemistry were used to analyze the expression of HK2 protein.ResultsThe expression of lincRNA-p21 and HK2 was effectively suppressed by miR-181b in Hep3B and HepG2 cells. Besides, the luciferase activities of wild type lincRNA-p21 and HK2 were remarkably suppressed by miR-181b in Hep3B and HepG2 cells. Activation and suppression of lincRNA-p21 expression using pcDNA and shRNA revealed a negative correlation between miR-181b and lincRNA-p21 expression as well as a positive correlation between HK2 and lincRNA-p21 expression. Moreover, lincRNA-p21 shRNA could effectively reverse the effect of hypoxia-induced dysregulation in miR-181b and HK2 expression, as well as the altered levels of glucose consumption and lactate production in Hep3B and HepG2 cells. Furthermore, lincRNA-p21 was capable of altering the growth and miR-181b/HK2 expression of HepG2 xenograft tumors in nude mice.ConclusionsOur study investigated the molecular relationship between lincRNA-p21, miR-181b and HK2 in cellular and animal models, and validated that hypoxia could up-regulate the expression level of lincRNA-p21 in the microenvironment of solid hepatocellular carcinoma tumor, which accordingly led to aggravated glycolysis via elevated HK2 expression, thus inhibiting the apoptosis of HCC.

2021 ◽  
Vol 11 ◽  
Author(s):  
Hong-Yu Zhang ◽  
Hong-Xia Liang ◽  
Shu-Huan Wu ◽  
He-Qing Jiang ◽  
Qin Wang ◽  
...  

BackgroundHepatocellular carcinoma (HCC) is the most common primary liver tumor, and the main reason is the unclear pathogenesis of HCC, which leads to a high fatality rate of HCC. Therefore, it is of great clinical significance to explore the molecular mechanism of HCC and find a targeted therapeutic approach from the molecular level.Materials and MethodsMicroRNA-15a-5p (miR-15a-5p) expression level was measured by bioinformatics and qRT-PCR. Luciferase assay and RIP assays were used to verify the relationship between programmed cell death protein 1 (PD1) PD 1 with miR-15a-5p. Exosomes were identified using TEM, Zetasizer Nano ZS, and western blot. Edu, Transwell, and scratch assay were performed to explore the role of miR-15a-5p or exo-miR-15a-5p on HepG2 cells progression.ResultsMicroRNA-15a-5p (miR-15a-5p) was decreased in HCC tissues and cell lines, which indicated a poor prognosis. Overexpression of miR-15a-5p inhibited viability, proliferation, migration and invasion of HepG2 cells. Then, we isolated exosomes from cancer cells, and found that miR-15a-5p was packaged into exosomes from cancer cells. Furthermore, exo-miR-15a-5p was secreted into CD8+ T cells, then directly inhibited PD1 expression via targeted binding. Then, we co-cultured CD8+ T cells transfected with PD1 with HepG2 transfected with miR-15a-5p, PD1 remitted the inhibitory role of miR-15a-5p on HCC progression.ConclusionTogether, present study revealed exo-miR-15a-5p from cancer cells inhibited PD1 expression in CD8+ T cells, which suppressed the development of HCC.


2021 ◽  
Author(s):  
Hailong Li ◽  
Shuwei Wang ◽  
Yonggang Wang

Abstract Background: This study aims to explore the role and underlying mechanism of the IDH1R132H in the growth, migration, and glycolysis of glioma cells.Methods: The alternation of IDH1, HIF-1α, and LDHA genes in 283 LGG sample (TCGA LGG database) was analyzed on cBioportal. The expression of these three genes in glioma tissues with IDH1R132H mutation or IDH1 wild type (IDH1-WT) and normal brain tissues was also assessed using immunohistochemistry assay. In addition, U521 glioma cells were transfected with IDH1-WT or IDH1R132H to explore the role of IDH1 in the proliferation and migration of glioma cells in vitro. Cell growth curve, Transwell mitigation assay, and assessment of glucose consumption and lactate production were conducted to evaluate the proliferation, migration, and glycolysis of glioma cells.Results: The expression of HIF-1α and LDHA in IDH1R132H mutant was significantly lower than that in glioma cells with wild type IDH1 (P<0.05). IDH1R132H inhibited the proliferation and glycolysis of U521 glioma cells.Conclusion: The IDH1 mutation IDH1R132H plays an important role in the occurrence and development of glioma through inhibiting the expression of HIF-1α and glycolysis.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Wu ◽  
Zhixi Li ◽  
Youyu Wang ◽  
Xueming Ju ◽  
Rui Huang

Hepatocellular carcinoma (HCC) is the most common type of malignancy of the liver and has been reported as the third most frequent cause of cancer associated death worldwide. Accumulating evidence showed that the expression of miR-34a was abnormal in HCC patients; however, the role of miR-34a in HCC is not clear. In this study, we have observed low expression of the miR-34a in both HCC tissues and hepatoma cell line as compared to normal control. Further to investigate the role of miR-34a in HCC development, HepG2 cells were transfected with miR-34a mimic. Following transfection, miR-34a expression was significantly increased, which further repressed proliferation of HepG2 cells. Bioinformatics, Luciferase Reporter, RT-qPCR, and western blotting assays indicated that special AT-rich sequence-binding protein-2 (SATB2) is a direct target of miR-34a in HCC cells. There was a negative correlation between the expression levels of SATB2 and miR-34a. Investigation into the molecular mechanism indicated that miR-34a regulated cell proliferation through inhibiting SATB2. Therefore, the results of the present study may improve understanding regarding the role of miR-34a in regulating cell proliferation and contribute to the development of novel therapy of HCC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rui Hu ◽  
Shan Chen ◽  
Jianxin Yan

Abstract Background CircRNA CNST (circ-CNST) is a newly identified biomarker for prognosis of osteosarcoma (OS). However, its role in OS progression remains to be well documented. Methods Expression of circ-CNST, microRNA (miR)-578, lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) was detected by quantitative real-time polymerase chain reaction and Western blotting. The physical interaction was confirmed by dual-luciferase reporter assay. Cell behaviors and glycolysis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry, transwell assays, xenograft experiment, and commercial kits. Results Circ-CNST was upregulated in human OS tissues and cells, accompanied with downregulation of miR-578 and upregulation of LDHA and PDK1. There were negative correlations between miR-578 expression and circ-CNST or LDHA/PDK1 in OS tissues. Moreover, high circ-CNST/LDHA/PDK1 or low miR-578 might predict shorter overall survival, advanced TNM stages, and lymph node metastasis. Physically, miR-578 was targeted by circ-CNST, and miR-578 could target LDHA/PDK1. Functionally, blocking circ-CNST and restoring miR-578 enhanced apoptosis rate and suppressed cell proliferation, colony formation, migration, and invasion in 143B and U2OS cells, accompanied with decreased glucose consumption, lactate production, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio. Furthermore, in vivo growth of U2OS cells was retarded by silencing circ-CNST. Depletion of miR-578 could counteract the suppressive role of circ-CNST deficiency in 143B and U2OS cells, and restoring LDHA or PDK1 partially reversed the role of miR-578 inhibition as well. Conclusion Circ-CNST knockdown could antagonize malignant behaviors and glycolysis of OS cells by regulating miR-578-LDHA/PDK1 axes.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 757-769 ◽  
Author(s):  
Li Zhang ◽  
Guozhan Jia ◽  
Binya Shi ◽  
Guanqun Ge ◽  
Hongbin Duan ◽  
...  

Background: Protease serine 8 (PRSS8), a trypsin-like serine peptidase, has been shown to function as a tumour suppressor in various malignancies. The present study aimed to investigate the expression pattern, prognostic value and the biological role of PRSS8 in human hepatocellular carcinoma (HCC). Methods: PRSS8 expression in 106 HCC surgical specimens was examined by Real-time polymerase chain reaction (PCR) and immunohistochemistry, and its clinical significance was analysed. The role of PRSS8 in cell proliferation, apoptosis and invasion were examined in vitro and in vivo. Results: PRSS8 mRNA and protein expression were decreased in most HCC tumours from that in matched adjacent non-tumour tissues. Low intratumoral PRSS8 expression was significantly correlated with poor overall survival (OS) in patients with HCC (P = 0.001). PRSS8 expression was an independent prognostic factor for OS (hazard ratio [HR] = 1.704, P = 0.009). Furthermore, restoring PRSS8 expression in high metastatic HCCLM3 cells significantly inhibited cell proliferation and invasion. In contrast, silencing PRSS8 expression in non-metastatic HepG2 cells significantly enhanced cell growth and invasion. Moreover, our in vivo data revealed that attenuated PRSS8 expression in HepG2 cells greatly promoted tumour growth, while overexpression of PRSS8 remarkably inhibited tumour growth in an HCCLM3 xenograft model. Enhanced cell growth and invasion ability mediated by the loss of PRSS8 expression was associated with downregulation of PTEN, Bax and E-cadherin and an upregulation in Bcl-2, MMP9 and N-cadherin. Conclusions: Our data demonstrate that PRSS8 may serve as a tumour suppressor in HCC progression, and represent a valuable prognostic marker and potential therapeutic target for HCC.


2020 ◽  
Author(s):  
Fan Ye ◽  
Shiming Tian ◽  
Huimin Hu ◽  
Zhengwen Yu

Abstract Background: The expression of SIN3A is closely correlated with electroacupuncture (EA) treatment efficacy of scopolamine-induced amnesia (SIA), but its underlying mechanisms remain to be further explored. Methods: Quantitative real-time PCR was performed to analyze the expression of candidate microRNAs (miRNAs) and SIN3A mRNA in a rat model of SIA. Western blot was carried out to evaluate the differential expression of SIN3A proteins under different circumstances. Luciferase assay was used to explore the inhibitory role of certain miRNAs in SIN3A expression. A novel object recognition (NOR) test was performed to assess the memory function of SIA rats undergoing EA treatment. Immunohistochemistry was carried out to evaluate the expression of SIN3A in the hippocampus of SIA rats. Results: Rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p were significantly up-regulated in SIA rats treated with EA. In addition, rno-miR-183-5p and rno-miR-210-3p exerted an inhibitory effect on SIN3A expression. EA treatment of SIA rats effectively restored the dysregulated expression of rno-miR-183-5p, rno-miR-210-3p and SIN3A. EA treatment also promoted the inhibited expression of neuronal IEGs including Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats. Accordingly, the NOR test also confirmed the effect of EA treatment on the improvement of memory in SIA rats.Conclusion: In summary, the findings of this study demonstrated that scopolamine-induced amnesia was associated with downregulated expression of miR-210/miR-183 and upregulated expression of SIN3A. Furthermore, treatment with EA alleviated scopolamine-induced amnesia in rats and was associated with upregulated expression of miR-210/miR-183 and downregulated expression of SIN3A.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yinghui Hong ◽  
Mingliang Ye ◽  
Fan Wang ◽  
Jun Fang ◽  
Chun Wang ◽  
...  

BackgroundHepatocellular carcinoma (HCC) remains a major global health burden due to its high prevalence and mortality. Emerging evidence reveals that microRNA (miRNA) plays a vital role in cancer pathogenesis and is widely involved in the regulation of signaling pathways via their targeting of downstream genes. MiR-21-3p, a liver-enriched miRNA, and SMAD7, the negative regulator of the TGF-β signaling pathway, likely exert a vital influence on HCC progression.AimsHere, we explore the role of the miR-21-3p-SMAD7/YAP1 axis on HCC pathogenesis.MethodsMiRNA microarray analysis was performed for miRNA screening. The dual-luciferase assay was adopted for target verification. Expression of miRNA and related genes were quantified via qRT-PCR, western blotting, and immunohistochemical staining. Flow cytometry and the transwell migration assay were used to detail cell apoptosis, invasion and metastases. Rat models were established to explore the role of the miR-21-3p-SMAD7/YAP1 axis in hepatocarcinogenesis. Bioinformatics analysis was conducted for exploring genes of clinical significance.ResultsMiR-21-3p levels were found to be significantly elevated in hepatocellular carcinoma and indicate poor overall survival. High miR-21-3p levels were associated with advanced tumor stages (P = 0.029), in particular T staging (P = 0.026). Low SMAD7/high YAP1 levels were confirmed in both HCC and rat models with advanced liver fibrosis and cirrhosis. Besides, SMAD7 was demonstrated to be the direct target of miR-21-3p. The effect of MiR-21-3p on tumor phenotypes and YAP1 upregulation could be partly reversed via the restoration of SMAD7 expression in HCC cell lines. Overexpression of YAP1 after miR-21-3p upregulation promoted expression of nuclear transcription effector connective tissue growth factor. Co-survival analysis indicated that lower miR-21-3p/higher SMAD7 (P = 0.0494) and lower miR-21-3p/lower YAP1 (P = 0.0379) group patients had better overall survival rates. Gene Set Variation Analysis revealed that gene sets related to miR-21-3p and SMAD7 were significantly associated with the TGF-β signaling pathway in HCC.ConclusionMiR-21-3p promotes migration and invasion of HCC cells and upregulation of YAP1 expression via direct inhibition of SMAD7, underscoring a major epigenetic mechanism in the pathogenesis of HCC.


2020 ◽  
Author(s):  
Fan Ye ◽  
Shiming Tian ◽  
Huimin Hu ◽  
Zhengwen Yu

Abstract Background The expression of SIN3A is closely correlated with EA treatment efficacy of SIA, but its underlying mechanisms remain to be further explored.Methods Quantitative real-time PCR was performed to analyze the expression of candidate miRNAs and SIN3A mRNA in a rat model of SIA. Western blot was carried out to evaluate the differential expression of SIN3A proteins under distinct circumstances. Luciferase assay was used to explore the inhibitory role of certain miRNAs in SIN3A expression. NOR test was performed to assess the memorial ability of SIA rats undergoing EA treatment. Immunohistochemistry was carried out to evaluate the expression of SIN3A in the hippocampus of SIA rats.Results Rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p were significantly up-regulated in SIA rats treated with EA. In addition, rno-miR-183-5p and rno-miR-210-3p exerted an inhibitory effect on SIN3A expression. EA treatment of SIA rats effectively restored the normal expression of rno-miR-183-5p, rno-miR-210-3p and SIN3A. The NOR test also confirmed the effect of EA treatment on the improvement of memory in SIA rats.Conclusion In this study, an animal model of SIA was treated with EA to investigate its therapeutic effect. Moreover, our work presented solid evidence on the regulatory pathway of miR-183/SIN3A and miR-210/SIN3A in the pathogenesis of SIA.


Sign in / Sign up

Export Citation Format

Share Document