scholarly journals Hsa_circ_0001017 inhibits proliferation and metastasis via regulating the let-7g-3p/NDST3 axis in glioma

2021 ◽  
Vol 59 (2) ◽  
pp. 174-188
Author(s):  
Tao Li ◽  
Yunlong Li ◽  
Wei Zhang ◽  
Jing Zhang
2019 ◽  
Author(s):  
Er-Bao Chen ◽  
Xuan Qin ◽  
Ke Peng ◽  
Qian Li ◽  
Cheng Tang ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 105-111
Author(s):  
Lin Zheng ◽  
Weibiao Lv ◽  
Yuanqing Zhou ◽  
Xu Lin ◽  
Jie Yao

: Since its discovery more than 100 years ago, aspirin has been widely used for its antipyretic, analgesic, anti-inflammatory, and anti-rheumatic activities. In addition to these applications, it is increasingly becoming clear that the drug also has great potential in the field of cancer. Here, we briefly review current insights of aspirin’s anti-tumor effects. These are multiple and vary from inhibiting the major cellular mTOR pathways, acting as a calorie-restricted mimetic by inhibition of energy production, suppressing platelet aggregation and granule release, inhibiting immune escape of tumor cells, to decreasing inflammatory responses. We consider these five mechanisms of action the most significant of aspirin’s anti-tumor effects, whereby the anti-tumor effect may ultimately stem from its inhibition of energy metabolism, platelet function, and inflammatory response. As such, aspirin can play an important role to reduce the occurrence, proliferation, and metastasis of various types of tumors. However, most of the collected data are still based on epidemiological investi-gations. More direct and effective evidence is needed, and the side effects of aspirin intake need to be solved before this drug can be widely applied in cancer treatment.


2019 ◽  
Vol 20 (8) ◽  
pp. 852-870
Author(s):  
Hassan Dianat-Moghadam ◽  
Ladan Teimoori-Toolabi

Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation, embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation, cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore, gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations, and changes in tumor–stromal cells interactions, is associated with the development and progression of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms in human disease and tumor progression leading to the presentation of emerging therapeutic approaches, resistance to FGFR targeting, and clinical potentials of individual FGF family in several human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides several attempts to develop predictive biomarkers and combination therapies for different cancers have been explored.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shuang Cui ◽  
Qiong Wu ◽  
Ming Liu ◽  
Mu Su ◽  
ShiYou Liu ◽  
...  

AbstractSuper-enhancers or stretch enhancers (SEs) consist of large clusters of active transcription enhancers which promote the expression of critical genes that define cell identity during development and disease. However, the role of many super-enhancers in tumor cells remains unclear. This study aims to explore the function and mechanism of a new super-enhancer in various tumor cells. A new super-enhancer that exists in a variety of tumors named EphA2-Super-enhancer (EphA2-SE) was found using multiple databases and further identified. CRISPR/Cas9-mediated deletion of EphA2-SE results in the significant downregulation of its target gene EphA2. Mechanistically, we revealed that the core active region of EphA2-SE comprises E1 component enhancer, which recruits TCF7L2 and FOSL2 transcription factors to drive the expression of EphA2, induce cell proliferation and metastasis. Bioinformatics analysis of RNA-seq data and functional experiments in vitro illustrated that EphA2-SE deletion inhibited cell growth and metastasis by blocking PI3K/AKT and Wnt/β-catenin pathway in HeLa, HCT-116 and MCF-7 cells. Overexpression of EphA2 in EphA2-SE−/− clones rescued the effect of EphA2-SE deletion on proliferation and metastasis. Subsequent xenograft animal model revealed that EphA2-SE deletion suppressed tumor proliferation and survival in vivo. Taken together, these findings demonstrate that EphA2-SE plays an oncogenic role and promotes tumor progression in various tumors by recruiting FOSL2 and TCF7L2 to drive the expression of oncogene EphA2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document