scholarly journals THE ASESSMENT OF THE SPATIAL AND TEMPORAL DYNAMICS OF AIR TEMPERATURE OF AIR TEMPERATURE IN THE URALS AND WESTERN SIBERIA IN THE SECOND HALF OF THE 20TH-EARLY 21TH CENTURIES WITH THE USE OF REANALYSIS

Author(s):  
В.В. ФОМИН ◽  
М.Г. УНДЕРСКИХ

Проведен анализ пространственно-временной динамики приземной среднегодовой температуры воздуха на территории Урала и Западной Сибири по данным 92 метеостанций и реанализов ERA-20С и CERA-20С за период с 1961 по 2010 гг. Установлено, что значения коэффициента корреляции за исследуемый временной промежуток между данными инструментальных метеонаблюдений и данными реанализов ERA-20С и CERA-20С лежат в интервалах 0,81–0,97 и 0,86–0,98 соответственно. Данные по температуре воздуха реанализа CERA-20С лучше согласуются со значениями температуры, полученными на метеостанциях, по сравнению с данными реанализа ERA-20C. В южной части района исследований коэффициенты корреляции ниже, чем в регионах, расположенных севернее. В целом данные реанализа CERA-20C целесообразно использовать при проведении исследований, связанных с климатической изменчивостью и региональным изменением климата Урала и Западной Сибири на участках, находящихся на удалении от метеостанций. The analysis of the spatio-temporal dynamics of the mean annual air temperature in the Urals and Western Siberia on the basis of data of 92 weather stations and reanalysis ERA-20C and CERA-20C for the period from 1961 to 2010 was implemented. It was found that the values of the correlation coeffi cients for the studied time interval between the meteorological data and the data of reanalysis ERA-20C and CERA-20C lie in the intervals of 0,81–0,97 and 0,86–0,98, respectively. The reanalysis of CERA20C is in better agreement with the data obtained at weather stations compared to the reanalysis of ERA20C. In the southern part of the research area, the correlation coeffi cients are lower than in the regions located to the North. In general, data of the CERA-20C. Reanalysis should be used for studies related to climate variability and regional climate change in the Urals and Western Siberia at sites located at a signifi cant distance from weather stations.

2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Fenner ◽  
Benjamin Bechtel ◽  
Matthias Demuzere ◽  
Jonas Kittner ◽  
Fred Meier

In recent years, the collection and utilisation of crowdsourced data has gained attention in atmospheric sciences and citizen weather stations (CWS), i.e., privately-owned weather stations whose owners share their data publicly via the internet, have become increasingly popular. This is particularly the case for cities, where traditional measurement networks are sparse. Rigorous quality control (QC) of CWS data is essential prior to any application. In this study, we present the QC package “CrowdQC+,” which identifies and removes faulty air-temperature (ta) data from crowdsourced CWS data sets, i.e., data from several tens to thousands of CWS. The package is a further development of the existing package “CrowdQC.” While QC levels and functionalities of the predecessor are kept, CrowdQC+ extends it to increase QC performance, enhance applicability, and increase user-friendliness. Firstly, two new QC levels are introduced. The first implements a spatial QC that mainly addresses radiation errors, the second a temporal correction of the data regarding sensor-response time. Secondly, new functionalities aim at making the package more flexible to apply to data sets of different lengths and sizes, enabling also near-real time application. Thirdly, additional helper functions increase user-friendliness of the package. As its predecessor, CrowdQC+ does not require reference meteorological data. The performance of the new package is tested with two 1-year data sets of CWS data from hundreds of “Netatmo” CWS in the cities of Amsterdam, Netherlands, and Toulouse, France. Quality-controlled data are compared with data from networks of professionally-operated weather stations (PRWS). Results show that the new package effectively removes faulty data from both data sets, leading to lower deviations between CWS and PRWS compared to its predecessor. It is further shown that CrowdQC+ leads to robust results for CWS networks of different sizes/densities. Further development of the package could include testing the suitability of CrowdQC+ for other variables than ta, such as air pressure or specific humidity, testing it on data sets from other background climates such as tropical or desert cities, and to incorporate added filter functionalities for further improvement. Overall, CrowdQC+ could lead the way to utilise CWS data in world-wide urban climate applications.


Author(s):  
Larisa Nazarova

The overview of climatic conditions in Karelia is based on the data from meteorological observations carried out in 1951-2009 at Roskomgidromet weather stations situated in the study area. Taking the period in question into account, the mean annual air temperature norm has increased by 0.2-0.3°C. The greatest deviation from multiyear averages of mean monthly air temperature is observed in January and March. The investigation of the changes the basic regional climate characteristics is very important in present time because the global climate is changed. The analysis the data about air temperature and precipitation, that were obtained for the different meteorological stations in the investigated region, shows that the regional climate is changed and the main tendencies are directly proportional to the change of the global characteristics.


2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Urszula Somorowska ◽  
Izabela Piętka

AbstractThe objective of this study was to investigate the performance of streamflow in a lowland mesoscale catchment in Poland under current and future climate conditions. Simulations of hypothetical streamflow in the future climate were facilitated by meteorological data sets from ensemble simulations from all over Europe with the Regional Climate Model CLM. Projections of precipitation and air temperature for the 21st century under the SRES A1B scenario were used as an input to the hydrological model simulating streamflow at the daily time scale. The combination of relatively moderate increase of annual precipitation sum and mean air temperature might cause lower annual discharges. The possible decrease in stream water resources might be a signal of reduced subsurface recharge and land over drying processes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247278
Author(s):  
Mengsheng Qin ◽  
Yuan Zhang ◽  
Shiquan Wan ◽  
Yuan Yue ◽  
Yuan Cheng ◽  
...  

Contrary to the common expectation that the reference evapotranspiration (ETo), which is an indicator of the atmospheric evaporation capability, increases in warming climate, the decline of the ETo has been reported worldwide, and this contradiction between the expected increasing ETo and the observed decreasing one is now termed the “evaporation paradox”. Based on the updated meteorological data (1960–2019), we separately detected the spatiotemporal characteristics and the causes of the “evaporation paradox” in three subregions, namely Huaibei, Jianghuai, and Sunan, and throughout the entire province of Jiangsu in southeastern China. Different from the reported continuous unidirectional variations in the ETo, in the province of Jiangsu, it generally showed a decreasing trend before 1990 but followed an increasing trend from 1990 to 2019, which led to the different characteristics of the “evaporation paradox” in the periods from 1960 to 1989, from 1990 to 2019, and from 1960 to 2019. In the first 30 years, the reduction of the wind speed (WS) was the main reason for the decreased ETo, which consequently gave rise to the “evaporation paradox” in spring and winter in the Huaibei region and only in winter in the two other subregions and throughout the entire province. We noticed that the “evaporation paradox” in spring in the Sunan region was expressed by the decreased daily mean air temperature (Tmean) and the increased ETo which was chiefly induced by the decreased relative humidity (RH) and the increased vapor pressure deficit (VPD). After 1990, the decreased WS also dominated the decreased ETo and resulted in the “evaporation paradox” in winter in the Jianghuai region. Furthermore, the decreased sunshine hour (SH) was the main factor influencing the decreased ETo, thereby inducing the “evaporation paradox” in summer and autumn in the Jianghuai region and only in autumn in the Huaibei region and throughout the whole province from 1990 to 2019. In the whole study period from 1960 to 2019, the decreased SH was also found to be responsible for the decreased ETo and for the “evaporation paradox” in summer in all the subregions and throughout the whole province. However, regarding the “evaporation paradox” in autumn, in winter, and in the entire year in the Huaibei region and throughout the whole province, the observed decreased ETo was largely due to the reduced WS from 1960 to 2019. In summary, in addition to the air temperature, the ETo has shifted due to the other meteorological variables (especially the WS, the SH, and the VPD) and shaped the unique spatiotemporal characteristics of the “evaporation paradox” in the province of Jiangsu in southeastern China. Moreover, future studies and simulations addressing the regional climate change and hydrological cycles should take account of the changeable key meteorological variables in different subregions and seasons of the province of Jiangsu.


Author(s):  
Elena Grigore ◽  
Dana Maria Constantin (Oprea) ◽  
Elena Bogan ◽  
Marius-Alin Cristea ◽  
Florina Tatu

The appearance of the analysis models, as a physical or mathematic form, has allowed simplifying the graphic representation of the processes specific to bioclimatology. Thus, the bioclimatic index becomes a useful and practical work tool in the scientific research, avoiding a multiple ranges of possible evaluations of the positive or negative potential that the climate of a region has on the human health. The proposed study analyzes the calculated values of the thermo-hygrometric index, for the period between the years 1981-2010. The database was improved with the meteorological data obtained from the five weather stations located in the Southern part of the Dobrogea Plateau. The mathematic formula launched by Kyle W.J. is based on the measured values of the air temperature (ºC) and relative air humidity (%). The obtained results allow us to highlight both the specific bioclimatic areas and the way in which the tourism in the area can be affected. The bioclimatic extension and intensity is rendered by a suggestive and synthetic graphic expression. The maps showing the spatial distribution of the index were obtained by combining the isotherm method with the kriging interpolation specific to the ArcMap.


2020 ◽  
Vol 177 ◽  
pp. 05012
Author(s):  
N.V. Grevtsev ◽  
T.A. Lebedeva ◽  
V.V. Belov ◽  
N.S. Ivanova

Modern challenges, environmental risks and economic uncertainties in the field of natural resource management in the Urals and Western Siberia are considered. Information relating to the regional changes in the soil surface (air) temperature, the state of the cryolitic zone of the forest and swamp ecosystems, and extreme uncertainties is presented.


2021 ◽  
Author(s):  
Zhaomin Ding ◽  
Renguang Wu

AbstractThis study investigates the impact of sea ice and snow changes on surface air temperature (SAT) trends on the multidecadal time scale over the mid- and high-latitudes of Eurasia during boreal autumn, winter and spring based on a 30-member ensemble simulations of the Community Earth System Model (CESM). A dynamical adjustment method is used to remove the internal component of circulation-induced SAT trends. The leading mode of dynamically adjusted SAT trends is featured by same-sign anomalies extending from northern Europe to central Siberia and to the Russian Far East, respectively, during boreal spring and autumn, and confined to western Siberia during winter. The internally generated component of sea ice concentration trends over the Barents-Kara Seas contributes to the differences in the thermodynamic component of internal SAT trends across the ensemble over adjacent northern Siberia during all the three seasons. The sea ice effect is largest in autumn and smallest in winter. Eurasian snow changes contribute to the spread in dynamically adjusted SAT trends as well around the periphery of snow covered region by modulating surface heat flux changes. The snow effect is identified over northeast Europe-western Siberia in autumn, north of the Caspian Sea in winter, and over eastern Europe-northern Siberia in spring. The effects of sea ice and snow on the SAT trends are realized mainly by modulating upward shortwave and longwave radiation fluxes.


Paleobiology ◽  
2017 ◽  
Vol 43 (4) ◽  
pp. 550-568 ◽  
Author(s):  
Michał Zatoń ◽  
Tomasz Borszcz ◽  
Michał Rakociński

AbstractIn this study we focused on the dynamics of encrusting assemblages preserved on brachiopod hosts collected from upper Frasnian and lower Famennian deposits of the Central Devonian Field, Russia. Because the encrusted brachiopods come from deposits bracketing the Frasnian/Famennian (F/F) boundary, the results also shed some light on ecological differences in encrusting communities before and after the Frasnian–Famennian (F-F) event. To explore the diversity dynamics of encrusting assemblages, we analyzed more than 1300 brachiopod valves (substrates) from two localities. Taxon accumulation plots and shareholder quorum subsampling (SQS) routines indicated that a reasonably small sample of brachiopod host valves (n=50) is sufficient to capture the majority of the encrusting genera recorded at a given site. The richness of encrusters per substrate declined simultaneously with the number of encrusting taxa in the lower Famennian, accompanied by a decrease in epibiont abundance, with a comparable decrease in mean encrustation intensity (percentage of bioclasts encrusted by one or more epibionts). Epibiont abundance and occupancy roughly mirror each other. Strikingly, few ecological characteristics are correlated with substrate size, possibly reflecting random settlement of larvae. Evenness, which is negatively correlated with substrate size, shows greater within-stage variability among samples than between Frasnian and Famennian intervals and may indicate the instability of early Famennian biocenoses following the faunal turnover. The occurrence distribution of encrusters points to nonrandom associations and exclusions among several encrusting taxa. However, abundance and occupancy of microconchids remained relatively stable throughout the sampled time interval. The notable decline in abundance (~60%) and relatively minor decline in diversity (~30%) suggest jointly that encrusting communities experienced ecological collapse rather than a major mass extinction event. The differences between the upper Frasnian and lower Famennian encrusting assemblages may thus record a turnover associated with the F-F event.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenfang Guo ◽  
Letai Yi ◽  
Peng Wang ◽  
Baojun Wang ◽  
Minhui Li

AbstractThe relationship between air temperature and the hospital admission of adult patients with community-acquired pneumonia (CAP) was analyzed. The hospitalization data pertaining to adult CAP patients (age ≥ 18 years) in two tertiary comprehensive hospitals in Baotou, Inner Mongolia Autonomous Region, China from 2014 to 2018 and meteorological data there in the corresponding period were collected. The exposure–response relationship between the daily average temperature and the hospital admission of adult CAP patients was quantified by using a distributed lag non-linear model. A total of 4466 cases of adult patients with CAP were admitted. After eliminating some confounding factors such as relative humidity, wind speed, air pressure, long-term trend, and seasonal trend, a lower temperature was found to be associated with a higher risk of adult CAP. Compared to 21 °C, lower temperature range of 4 to –12 °C was associated with a greater number of CAP hospitalizations among those aged ≥ 65 years, and the highest relative risk (RR) was 2.80 (95% CI 1.15–6.80) at a temperature of − 10 °C. For those < 65 years, lower temperature was not related to CAP hospitalizations. Cumulative lag RRs of low temperature with CAP hospitalizations indicate that the risk associated with colder temperatures appeared at a lag of 0–7 days. For those ≥ 65 years, the cumulative RR of CAP hospitalizations over lagging days 0–5 was 1.89 (95% CI 1.01–3. 56). In brief, the lower temperature had age-specific effects on CAP hospitalizations in Baotou, China, especially among those aged ≥ 65 years.


2009 ◽  
Vol 50 (50) ◽  
pp. 126-134 ◽  
Author(s):  
Johanna Nemec ◽  
Philippe Huybrechts ◽  
Oleg Rybak ◽  
Johannes Oerlemans

AbstractWe have reconstructed the annual balance of Vadret da Morteratsch, Engadine, Switzerland, with a two-dimensional energy-balance model for the period 1865–2005. The model takes into account a parameterization of the surface energy fluxes, an albedo that decreases exponentially with snow depth as well as the shading effect of the surrounding mountains. The model was first calibrated with a 5 year record of annual balance measurements made at 20 different sites on the glacier between 2001 and 2006 using meteorological data from surrounding weather stations as input. To force the model for the period starting in 1865, we employed monthly temperature and precipitation records from nearby valley stations. The model reproduces the observed annual balance reasonably well, except for the lower part during the warmest years. Most crucial to the results is the altitudinal precipitation gradient, but this factor is hard to quantify from the limited precipitation data at high elevations. The simulation shows an almost continuous mass loss since 1865, with short interruptions around 1920, 1935 and 1980. A trend towards a more negative annual balance can be observed since the beginning of the 1980s. The simulated cumulative mass balance for the entire period 1865–2005 was found to be –46mw.e.


Sign in / Sign up

Export Citation Format

Share Document