scholarly journals Enzyme activity in assessing the effects of fumigation with soil smoke

2021 ◽  
Vol 4 (46) ◽  
pp. 26-26
Author(s):  
Alexander Saakian ◽  
◽  

Abstract As a result of fires, in addition to the fire itself and high temperatures, smoke from combustion products has a significant effect on the biota. The aim of the work was to assess the effect of fumigation with combustion products of plant origin on the biology activity of ordinary chernozem. In a series of model experiments, the reaction of soil enzymes (catalase, peroxidase, polyphenol oxidase, invertase, urease, phosphatase) to the smoke of the studied soil with products of thermal decomposition of plant materials (foliage, needles, straw, wood chips) is shown. A significant decrease in the enzyme activity of the studied enzymes was revealed in the range from 7% to 33%, depending on the time spent under the smoke of chernozem (15–120 minutes). The highest sensitivity to fumigation was noted for enzymes of the class of oxidoreductases: catalase, polyphenoloxidase, and peroxidase. Thus, a significant sensitivity and information content of the indicators of the enzyme activity of soils on the effect of smoke has been established, which can be used in monitoring the consequences of fires. Keywords: PYROGENIC EFFECTS, WILDFIRE, COMBUSTION PRODUCTS, CHERNOZEM, BIOLOGY ACTIVITY

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Ivan Vitázek ◽  
Martin Šotnar ◽  
Stella Hrehová ◽  
Kristína Darnadyová ◽  
Jan Mareček

The thermal decomposition of wood chips from an apple tree is studied in a static air atmosphere under isothermal conditions. Based on the thermogravimetric analysis, the values of the apparent activation energy and pre-exponential factor are 34 ± 3 kJ mol−1 and 391 ± 2 min−1, respectively. These results have also shown that this process can be described by the rate of the first-order chemical reaction. This reaction model is valid only for a temperature range of 250–290 °C, mainly due to the lignin decomposition. The obtained results are used for kinetic prediction, which is compared with the measurement. The results show that the reaction is slower at higher values of degree of conversion, which is caused by the influence of the experimental condition. Nevertheless, the obtained kinetic parameters could be used for the optimization of the combustion process of wood chips in small-scale biomass boilers.


2021 ◽  
Author(s):  
Yuliya Akimenko

Abstract In model laboratory and field conditions, the influence of pollution by antibiotics (benzylpenicillin, ampicillin, streptomycin, oxytetracycline, tylosin, pharmasin, tromexin, aliseryl, and nystatin) on the biological properties of ordinary chernozem was examined in concentrations of 1-1000 mg/kg. A decrease in the majority of the basic biological parameters of chernozem occurs when the concentration of antibiotics is 100 mg/kg of soil. In most cases, there was a direct relationship between the content of antibiotics in the soil and the scale of a decrease in the studied parameters. The degree of the influence of antibiotics was determined by their nature, concentration and time of exposure. Antibacterial antibiotics had more negative impact on the studied indicators than fungicidal ones. By the degree of inhibiting the biological properties of chernozem, antibiotics formed the following sequence: ampicillin > benzylpenicillin ≥ streptomycin ≥ oxytetracycline > tylosin ≥ pharmasin > nystatin > tromexin > aliseryl. Among the examined biological parameters when polluted by antibiotics, the most informative one was the number of ammonifying bacteria and the activity of dehydrogenases. The least informative was the indicator of catalase activity. The abundance of bacteria of the genus Azotobacter in case of pollution by antibiotics was not informative. The degree of a decrease in biological indicators was more pronounced in laboratory conditions than in the field ones. The rate of the biological activity recovery of chernozem after pollution in the field was 2 times higher. According to the degree of resistance to antibiotics, the investigated microorganisms of chernozem formed the following sequence: bacteria of the genus Azotobacter > micromycetes > amylolytic bacteria > ammonifying bacteria. Enzymes formed the following sequence: peroxidase ≥ polyphenol oxidase > catalase > dehydrogenase > invertase ≥ phosphatase. Antibiotics had prolonged influence on the biological properties of ordinary chernozem. The examined parameters were observed not to be recovered to control values even on the 120th day after the pollution.


2018 ◽  
Vol 27 (1) ◽  
pp. 91-99
Author(s):  
Waldemar Jaskółowski

Global statistics indicate that toxic combustion products generated during fires are the most frequent cause of fatalities, i.e. 70–80% of all fatalities. It should be emphasises that this is one of the least studied fi elds of knowledge as regards fire safety engineering. Consequently the problem of assessing the fire environment toxicity is one of the most important, and perhaps even the most important aspect that requires analyses and evaluation from the fire safety viewpoint. The first part of the article presents the current state of issues mentioned above. The author discussed measurement methods of toxic products that are being generated during thermal decomposition and combustion. The second part presents a review of available solutions in this respect, which have been outlined in selected available documents, such as for example standards and publications. The contents of this paper make it clear that the mentioned issues require comprehensive changes and the adoption of new regulations in this respect both in Poland and worldwide.


2020 ◽  
Vol 19 (5-6) ◽  
pp. 148-154
Author(s):  
Vali A. Sahratov ◽  
Tamara L. Malkova ◽  
Ludmila N. Karpova ◽  
Anna A. Pospelova

The State Pharmacopoeia of the XIV edition defines the approach for the assessment of the quality of medicinal plant materials, it deals with the identification of the main groups of biologically active substances by thin layer chromatography. According to this approach, the analysis of some types of medicinal plant materials as a part of some objects of plant origin was carried out. The article presents the quality assessment algorithm as examplified by peppermint leaves (Mentha piperita L.), which are part of a variety of plant object.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2232 ◽  
Author(s):  
Piotr Krawiec ◽  
Łukasz Warguła ◽  
Daniel Małozięć ◽  
Piotr Kaczmarzyk ◽  
Anna Dziechciarz ◽  
...  

The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.


Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 242 ◽  
Author(s):  
Shiwei Gong ◽  
Tao Zhang ◽  
Rui Guo ◽  
Hongbin Cao ◽  
Lianxuan Shi ◽  
...  

Soil enzymes play vital roles in the decomposition of soil organic matter and soil nutrient mineralisation. The activity of soil enzymes may be influenced by climate change. In the present study we measured soil enzyme activity, soil microclimate and soil nutrients to investigate the response of soil enzyme activity to N addition and experimental warming. Warming enhanced phosphatase activity (35.8%), but inhibited the cellulase activity (30%). N addition significantly enhanced the activities of urease (34.5%) and phosphatase (33.5%), but had no effect on cellulase activity. Significant interactive effects of warming and N addition on soil enzyme activity were observed. In addition, warming reduced soil C (7.2%) and available P (20.5%), whereas N addition increased soil total N (17.3%) and available N (19.8%) but reduced soil C (7.3%), total P (14.9%) and available P (23.5%). Cellulase and phosphatase activity was highly correlated with soil temperature and water content, whereas urease activity was determined primarily by soil N availability. The results show that climate change not only significantly affects soil enzyme activity, but also affects the mineralisation of soil nutrients. These findings suggest that global change may alter grassland ecosystem C, N and P cycling by influencing soil enzyme activity.


2020 ◽  
Author(s):  
Mehdi Rashtbari ◽  
Ali Akbar Safari Sinegani

<p>Annually, millions of tons of antibiotics in the world are used in medicine, veterinary and agriculture, and their excessive application have negative impacts on soil microorganisms and biological processes. In the present study, the effect of releasing the mostly used antibiotic in veterinary and ameliorative impact of organic and non-organic amendments was studied in which treatments include (control (without antibiotic), gentamicin, oxytetracycline and penicillin) and different concentrations (50, 100 and 200 mg/kg dry soil) with and without organic and mineral conditioners (cow manure, biochar and nano-zeolite) on soil urease (URE) and alkaline phosphatase (ALP) enzyme activity and their resistance and resilience indices at three time periods including 1-7, 7-30 and 30-90 days during a 90-day incubation time in a split-factorial design which soil conditioners were considered as the main plots and antibiotic types and concentration were as experimental factors. Resistance (RS) and resilience (RL) indices were calculated for enzymes activity. Results showed that in control treatment (without conditioner), application of gentamicin at 200 mg/kg caused a 68.9 percent decrease in soil ALP activity compared to control (without antibiotic), while a decrease in ALP activity in tetracycline-treated soils compared to control (without conditioner), manure, biochar, and nano-zeolite was 17.5, 13.8, 17.5 and 16 percent, respectively. URE enzyme activity at 30-90-days during incubation the period had an increasing trend from 1-7 days and the highest enzyme activity was measured on the 90<sup>th</sup> day of incubation. According to results, soil enzymes responded differently to antibiotics and conditioners in soil, so that penicillin and oxytetracycline had no considerable negative impact on ALP enzyme activity, while gentamicin and oxytetracycline at all applied concentrations significantly decreased URE activity. To sum up, findings showed that application of soil conditioners could alleviate negative impacts of antibiotics in soil and could improve resistance and resilience indexes of soil enzymes activities in soil.</p>


Sign in / Sign up

Export Citation Format

Share Document