scholarly journals Agroecological assessment of saline soils of Iran

2021 ◽  
Vol 6 (48) ◽  
pp. 16-16
Author(s):  
Shima Mohammadi ◽  

For the studied saline soils, the expediency of assessing the content of mobile ion compounds by chemical autography based on electrolysis and ionite membranes, vertical electrical sensing is shown. However, the electrical conductivity of soils depended on humidity, temperature, humus content, granulometric composition, soil density, and fertilizer application. The change in the nature and degree of soil salinization over time and in space was determined not only by the microrelief of the surface, groundwater and the change in the depth of the umbrellas in density, but also by the patterns of solubility of salts from humidity, temperature, pCO2, complex formation. For relative optimization of the situation, it is recommended to apply mineral fertilizers, stimulants, organic fertilizers, and create a large-porous layer at a depth of 40-70 cm, reducing the upward current from the lower layers of the soil to the Ap. Keywords: SOIL, SALINIZATION, WAYS OF OPTIMIZATION

2015 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
V. Lopushniak

Aim. To establish the effect of different fertilization systems in short fi eld crop rotation on the change in the state of humus in the dark gray podzolic soils in Western Forest-Steppe of Ukraine. Methods. Field studies were carried out in a stationary experiment of the Department of Soil Science and Agricultural Chemistry of the L’viv National Agrarian University; determination of humus content – according to DSTU 4289:2004, and that of its labile forms – in accordance with DSTU 4732:2007, fraction-group composition – by Ponomare- va-Plotnikova’s method, according to the measurement procedure 31-497058-008-2002. Results. The use of organo-mineral fertilizer system in short fi eld crop rotation with the saturation of organic fertilizers of 15 t/ha of crop rotation contributes to the humus content increase by 0.7 % after the third rotation in 0–40 cm layer of dark gray podzolic soil, the increase in the share of stable forms of humic compounds up to 57–59 % and the increase in the ratio of R HA :R FA to 1.3–1.4. The study demonstrated very high dependence of amount of gross energy reserves in the humus on the R HA :R FA ratio. Conclusions. The combined application of organic fertili- zers in the form of manure, non-market of the crop (straw) and siderate, along with mineral fertilizers is re- commended in short fi eld crop rotations of Western Forest-Steppe of Ukraine toensure expanded reproduction of fertility of dark gray podzolic soil, improvement of its humus status, increase in gross energy reserves and the share of the stable forms and humic acids in the humus.


Author(s):  
A.I. Ivanov ◽  
Zh.A. Ivanova ◽  
O.I. Yakusheva ◽  
P.A. Filippov

Целью комплексного исследования, выполненного в Меньковском филиале АФИ в 20122017 годах была оценка вредоносности возбудителя фитофтороза в зависимости от почвенноагрохимических и погодноклиматических условий. Методической основой исследования служил длительный полевой опыт агрофизический стационар в системе полевого и овощекормового севооборотов, в которых картофель возделывали по обороту пласта многолетних трав после озимой ржи и после ячменя. Объектами исследования служили: картофель раннеспелого сорта Ломоносовский среднеустойчивого к возбудителю фитофтороза по клубням и слабоустойчивого по ботве дерновоподзолистая почва средней, хорошей и высокой степени окультуренности и системы удобрения культуры. Супесчаная почва опыта характеризовалась рНКСl 5,26,3, содержанием гумуса 2,13,7, подвижных соединений P2О5 195676 мг/кг и К2О 97298 мг/кг. На хорошо окультуренной и высокоокультуренной почвах их поддерживали применением под картофель 35 и 70 т/га органических удобрений соответственно. Факторы исследования: степень окультуренности почвы (варианты: средняя, хорошая и высокая) и уровень применения минеральных удобрений в расчете на заданный КПД (коэффициент полезного действия фотосинтетически активной радиации) (варианты: КПД ФАР, 13 без удобрений КПД ФАР, 24 N80P20K100 КПД ФАР, 35 N120P30K150). В ходе комплексного исследования установлены параметры поражения возбудителем фитофтороза и уровень потерь урожая картофеля в зависимости от агроклиматических и почвенноагрохимических условий. Агрономическая эффективность изученных вариантов системы удобрения на культуре картофеля высокая. Уровень прибавок урожайности клубней и окупаемость 1 кг д.в. удобрений достигли 3358 и 8,311,6 з.ед. (зерновых единиц) на минеральной, 2545 и 3,98,0 з.ед. на органической и 3379 и 3,86,7 з.ед. на органоминеральной системе удобрения. В неэпифитотийных условиях (2 из 3 лет наблюдений) на фоне низких и умеренных показателей поражения общие потери урожая составляют 5, а окультуривание почвы и применение органических и минеральных удобрений снижают их на 3080. На эпифитотийном фоне, повторяющемся 1 раз в 3 года, пораженность ботвы и клубней картофеля возрастает в 4,3 и 6,1, интенсивность поражения в 2,8 и 3 и развитие в 12 и 17,5 раза соответственно. В эпифитотийные годы потери урожая возрастают в 5,2 раза (до 26), а минеральная система удобрения сокращает их только на среднеокультуренной почве. На этом фоне повышение степени окультуренности почвы и доз органических удобрений до высокого уровня неэффективно.Late blight is one of the most harmful potato diseases in the NorthWest of Russia. Today, its negative effects are aggravated by weather and climate changes. The goal of a comprehensive study carried out in the Menkovsky branch of the Agrophysical Institute in 2012 2017 was an assessment of the harmfulness of the late blight pathogen depending on soilagrochemical, weather and climate conditions. The methodical basis of the research was a prolonged field agrophysical stationary experiment in the system of field and vegetablefeed crop rotations, where potato was cultivated after winter rye and after barley, which, in turn, were grown after perennial grasses. The objects of the study were potato Lomonosovsky, sodpodzolic soil with different degree of cultivation and fertilizer systems for the culture. Potato Lomonosovsky is early ripening variety, its tubers are medium resistant to the late blight agent, and its tops are weakly resistant to it. The sodpodzolic soil had average, good and high cultivation degree. Sandy loam soil in the experiment had the value of pHKCl of 5.2 6.3, the humus content of 2.1 3.7, the content of mobile P2O5 and K2O compounds of 195 676, 97 298 mg/kg, respectively. In well and highly cultivated soils, these parameters were maintained by the application of 35 and 70 t/ha of organic fertilizers for potato, respectively. The experimental factors were the degree of soil cultivation (average, good and high) and the level of mineral fertilizer application for a given efficiency of photosynthetically active radiation (PAR efficiency of 1 3, without fertilizers PAR efficiency of 2 4, N80P20K100 PAR efficiency of 3 5, N120P30K150). In the course of the comprehensive study, the parameters of potato damage by late blight and the level of crop losses were established depending on the agroclimatic soilagrochemical conditions. Agronomic efficiency of the studied variants of the fertilizer system for potato was high. The level of tuber yield increase and payback of 1 kg of fertilizers active substances reached 33 58 and 8.3 11.6 cereal units (CU) for the mineral system, 25 45 and 3.9 8.0 CU for the organic one, and 33 79 and 3.8 6.7 CU for the organic and mineral fertilizer system. Under nonepiphytotic conditions (2 of 3 years of the observation), against the background of low and moderate damage rates, the total yield loss was 5, and the soil improvement and organic and mineral fertilizer application reduced them by 30 80. Against an epiphytotic background, repeated 1 time in 3 years, the damage of tops and potato tubers increases by a factor of 4.3 and 6.1, the intensity of the damage grew 2.8 and 3 times, and the development increases by a factor of 12 and 17.5 times, respectively. In the epiphytotic years, yield losses increased 5.2 times (up to 26), and the mineral fertilizer system reduced them only in medium cultured soil. Against this background, increasing the soil cultivation degree and organic fertilizer doses to a high level is ineffective.


2019 ◽  
Vol 52 (1) ◽  
pp. 113
Author(s):  
Oleg Goryanin ◽  
Anatoly Chichkin ◽  
Baurzhan Dzhangabaev ◽  
Elena Shcherbinina

<p>The influence of long-term use of mineral and organic fertilizers, crop rotations, plant residues, soil treatment systems on humus content of common chernozems and stabilization of productivity of field crops in the arid conditions of the Middle Volga region is considered on the example of researches in the Samara area. The zone climate of field experiments is characterized as extremely continental. The sum of the active temperatures (above 10°C) is 2,800-3,000°C. The average annual rainfall is 454.1 mm with fluctuations over the years from 187.5 mm to 704.6 mm. At some years, precipitation does not happen within a month or more. Hydrothermal index in May-August is 0,7, the duration of the frost-free period is 149 days. If the humus content in the region is 4.35-4.52%, then, it is necessary to introduce 6.7-8.0 t/ha of manure per year to maintain the balance of the deficit. The introduction of biological methods for the conservation and reproduction of soil fertility (green fertilizers, perennial grasses, straw as fertilizer) reduces the loss of humus by 0.15-0.24 t/ha. This makes it possible to increase the payback of mineral fertilizers, which must be taken into account when developing fertility reproduction systems for soils. In the variants with minimal and differentiated cultivation of the soil during crop rotation in 30 years of the study, the loss of humus in the 0-30 cm layer decreased by 0.04 - 0.73% (43-789 kg per year with maximum values in the combination of direct seeding of spring crops with deep loosening for a number of crop rotations is 4.14%, significantly exceeding the control (by 0.54%). The decrease in soil fertility in the variants with constant plowing and minimal tillage contributed to an increase in the conjugation of productivity of crops with humus. Based on the research, in order to preserve the fertility of the soil of ordinary chernozem, it is necessary to use green fertilizer, leguminous perennial grasses. In the regional rotations of crop production, new generation technologies are recommended, the basis of which is differentiated tillage with the use of crushed straw as fertilizer.</p>


Author(s):  
S. O. Olanipekun ◽  
A. O. Togun ◽  
A. K. Adebayo ◽  
F. B. Anjorin

Farmers use Inorganic Fertilizers (IF) to improve kenaf yield in Nigeria. However, the detrimental effects of mineral fertilizers and its high cost calls for the use of organic fertilizers that are locally available and environment friendly. Combination of Organic Fertiliser (OF) with IF may reduce the bulkiness of OF while harnessing the benefit of both for higher yields. Field trials were conducted at Ibadan and Ilora in 2013 and 2014 to investigate the effects of combined fertilizers on the growth and yield of kenaf. Organic and IF (NPK 20:10:10) fertilizers as: (i) 160 kg ha-1 (sole organic), (ii) 100 kg ha-1 (sole IFl), (iii) Organic and IF at 50:50 ratio and (iv) control (no fertilizer). The experiment was laid out in Randomized Complete block design (RCBD) and replicated three times. Results showed that plant height (220.17 cm, 216.80 cm) and stem diameter (2.27 cm, 1.16 cm). Bast fiber (2.27 t/ha, 2.27 t/ha) and seed yield (1.69 t/ha, 1.78 t/ha) in Ibadan and Ilora respectively were significantly higher in plots with combined fertilizer. Combined fertilizers had the highest fiber and seed yield above sole application and control (no fertilizer application). Hence it is recommended for kenaf cultivation in Southwest Nigeria.


2020 ◽  
Vol 222 ◽  
pp. 03020
Author(s):  
Andrei Kuzin ◽  
Alexei Solovchenko ◽  
Ludmila Stepantsova ◽  
Grigory Pugachev

Intensification of horticulture in Russia involves planting of new high-density orchards with drip irrigation and fertigation as well as intensification of the exploitation of traditional orchards. This approach involves an increase in mineral fertilizer application imposing the risk of soil fertility loss. For several reasons, the use of traditional organic fertilizers like manure in orchards is currently marginal. Although bacteria-based biofertilizers cannot substitute mineral fertilizers completely, they can significantly reduce the need for mineral fertilizer application. The effect of microbial biofertilizers of the brands “Azotovit” (Azotobacter chroococcum), “Phosphatovit” (Bacillus mucilaginosus), as well as a mixture of bacteria and the fungus, “Organic” (Azotobacter chroococcum, Bacillus subtilis, Bacillus megaterium, Trichoderma harzian) was studied in two field experiments. In the experiment #1, the preparations “Azotovit” and “Phosphatovit” were delivered through a drip irrigation system in various combinations with mineral fertilizers. In experiment #2, the preparation “Organic” was also applied to the soil with irrigation water, also in combination with the mineral fertilizer. When solely applied, none of the studied preparations changed significantly the soil nutrient content and yield as compared with the variant fertilized by the mineral fertilizer at the maximum studied application rate. The combination of the microbial biofertilizer and mineral fertilizers applied at a low rate ensured the yield commensurate to that obtained under high-rate application of the mineral fertilizer.


Author(s):  
Vitaly Igorevich Savich ◽  
◽  
Hafiza Tuymurodovna Artikova ◽  
Shavkatullo Shukurovich Nafetdinov ◽  
Khilola Hamroevna Salimova ◽  
...  

This article discusses the improvement of the development of biotests in saline soils with the addition of zeolite, phosphogypsum, organic fertilizers. The development of biotests on seawater with a concentration of 1-10 g / l improved when humates, KNO3, and water extracts from crop residues were added to the water. A decrease in the salinity of the upper soil layer is shown when an interlayer with large pores from high moor peat is created at a depth of 25 cm.


Author(s):  
E. R. Khadeeva ◽  
◽  
O. G. Lopatovskaya ◽  
L. I. Saraeva ◽  
T. E. Tkachuk ◽  
...  

The paper presents the study of soil cover of the steppe areas on the territory of the Daursky State Nature Biosphere Reserve in Transbaikalia (East Siberia). We determined the types of soils in the area surrounding the currently dry Barun-Torey lake according to the modern classification: Chestnut typical and saline, Saline gleyed typical and sulfide (sor) typical. Typical chestnut soils are formed on the tops of lake terraces and form complexes with saline soils. Salted chestnut soils occupy transit landforms. Saline soils are confined to low relief forms of the shoreline and the bottom of the lake, where the accumulation of readily soluble salts occurs. Typical Chestnut and saline soils are characterized by a light granulometric composition and a low humus content. Sulphide and typical gleyed saline soils have a heavier granulometric composition, a highly alkaline reaction of the soil solution, a very low humus content and a high content of readily soluble salts. The natural factors of soil formation are: slightly dissected relief; arid and cryoarid climate; groundwater level; steppe and halophytic meadow vegetation. Chestnut soils that form at the tops of lake terraces are the most common. Solonchaks occupy low relief forms of the lake shoreline and lake bottom.


2020 ◽  
Vol 4 (2) ◽  
pp. 281-288
Author(s):  
O. O. Vinyukov ◽  
A. P. Dudkina ◽  
T. V. Shevchenko

Barley is a crop, requires the availability of available nutrients in the soil, especially at the be-ginning of the growing season. The aim of the research was to determine the effectiveness of the aftereffect of using vermicompost when growing spring barley on different backgrounds in the Donetsk region. The studies were carried out according to the methodology of the field experiment of B. A. Dospehova. Research methods: field, supplemented by analytical studies, measurements, calculations and observations. The studies were conducted in 2017–2019 by laboratory-field method in field crop rotation in the experimental sections of the Donetsk SSES NAAS. The repetition in the experiments is 3-fold. The location of the plots is systematic. The soil is alkaline-chernozemic carbonate, having an average supply of mineral nitrogen and mobile phosphorus, low – potassium. The humus content of 4,2 % indicates a high potential soil fertility, but to realize the potential of the culture, additional application of phosphorus-potassium fertilizers is necessary. The technology for growing crops is generally accepted for the farms of the region, with the ex- ception of the factors studied. Variety of barley spring Avers. The experience scheme provides for: control (without fertilizers); background – saturation of crop rotation with vermicompost granular 2 t/ha; background + N30P30K30; background + N60P60K60; N30P30K30. The use of organic fertilizers under the predecessor in crop rotation provided improve nutriti-on conditions for plants, which positively affected the growth and development of spring barley plants. So, on the variants with the use of mineral fertilizers, the highest indices of the number of productive stems and the structure of the crop were noted in the background. The variant where N60P60K60 was added in the background produced the largest mass of 1000 grains – 49,8 g, which is 4,6 % higher than the control. Analysis of the study indicates the positive effect of the aftereffect of organic fertilizer (ver-micompost) on the yield of spring barley. The maximum yield of spring barley was obtained against the background of aftereffect of vermicompost 2 t/ha and the application of mineral fertilizers N60P60K60 – 5,05 t/ha, but due to high production costs, the profitability level is 114,9 %. The application of organic fertilizers under the background provides a yield of 3,67 t/ha and the highest level of profitability of 140,6 %. The optimal technological option provides for the introduction of mineral fertilizers in the norm N30P30K30 amid predecessor saturation with vermicompost. This allows increasing the yield up to 4,90 t/ha (by 1,46 t/ha or 42,4 % to the control) and obtaining a profitability level of 136,1 %. The use only of mineral fertilizer N30P30K30 in severely arid weather conditions of the steppe zone allows increasing the yield by 0,70 t/ha compared to the control but, due to the high cost of pro-duction, leads to a low production profitability of 99,6 %. Key words: spring barley, background, vermicompost, mineral fertilizers, yield, economic effici-ency.


Author(s):  
P. H. Kopytko ◽  
◽  
R. V. Yakovenko ◽  
I. P. Petryshyna

The balance of humus in a meter layer of dark gray, podzolized soil and podzolized chernozem of the experimental apple orchads and the study of their long-term fertilization was investigated (from the planting to 50-year old trees) with the use of organic (40 t/ha of cattle manure) and mineral fertilizers (N120P120K120), which were applied once in two years in autumn under the plowing in the row spacings at a depth of 18 20 cm. In the 20-year period (from 30- to 50-year-old experimental gardens) in a meter layer of dark gray podzolized soil on the non-fertilized control plots the amount of humus increased by 27 t/ha, and on the plots fertilized with manure – by 7 t/ha more and on the plots with mineral fertilizers – by 6 t/ha less and in podzolized chernozem – 37 t/ha and 3 t/ha more and 10 t/ha less respectively. Such changes in humus storage were caused by different replenishment of organic substances, and, to a greater extent, an increase in the biological activity of the fertilized soil, in particular the intensity of mineralization processes of organic matter, and in particular the humus compounds. Also, the replanishment of such soils in the gardens by the organic mass of fallen leaves and thin (d≤1mm) small roots, which systematically grows and dies, providing root nutrition of fruit plants, was investigated. These sources supplemented with organic substances the layer of soil of 0 20 cm – with all the mass of leaves and 38,5 43,3% of the total roots, and the increase in humus content was in all roots of the layer of 0 60 cm: in non-fertilized areas of 11 t/ha in dark gray soil and 18 tons per hectare in chernozem, under organic fertilizers, by 14 and 19 t/ha, and under mineral fertilizers – by 3 and 9 t/ha respectively. The greatest quantity of humus was added in the layer 60 100 cm: 16 and 19 t/ha, 20 and 21 t/ha and 18 t/ha. Such results were conditioned by the intensification of biological activity, in particular mineralization processes, in the upper layers of fertilized soils at higher humus content, as well as the migration of soluble humus substances deep into the meter profile.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ilan Stavi ◽  
Niels Thevs ◽  
Simone Priori

Soil salinization and sodification are common processes that particularly characterize drylands. These processes can be attributed either to natural conditions or anthropogenic activities. While natural causes include factors such as climate, lithology, topography, and pedology, human causes are mostly related to agricultural land-use, and specifically, to irrigated agriculture. The objective of this study was to thoroughly review this topic, while highlighting the major challenges and related opportunities. Over time, the extent of saline, sodic, and saline-sodic croplands has increased, resulting in accelerated land degradation and desertification, decreased agricultural productivity, and consequently jeopardizing environmental and food security. Mapping and monitoring saline soils is an important management tool, aimed at determining the extent and severity of salinization processes. Recent developments in advanced remote sensing methods have improved the efficacy of mapping and monitoring saline soils. Knowledge on prevention, mitigation, and recovery of soil salinity and sodicity has substantially grown over time. This knowledge includes advanced measures for salt flushing and leaching, water-saving irrigation technologies, precision fertilizer systems, chemical restoration, organic and microbial remediation, and phytoremediation of affected lands. Of a particular interest is the development of forestry-related means, with afforestation, reforestation, agroforestry, and silvopasture practices for the recovery of salt-affected soils. The forecasted expansion of drylands and aggravated drying of existing drylands due to climatic change emphasize the importance of this topic.


Sign in / Sign up

Export Citation Format

Share Document